
Security Protocol and
Data Model (SPDM) Architecture

Version 1.0.0 Release
PMCI Security Task Force
Last Updated: 12/11/2019

Copyright 2018-2019 DMTF

Disclaimer
• The information in this presentation represents a snapshot of work in

progress within the DMTF.
• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.
• For additional information, see the DMTF website.

• This information is a summary of the information that will appear in the
specifications. See the specifications for further details.

2

Security Protocol and Data Model 1.0
• How?

• Two Major Features
• Authentication
• Attestation (authenticated measurements)

• Capable of being referenced by other standards.
• DMTF is initially mapping to MCTP.
• Alliance Partners are considering mapping SPDM to their standards.

3

SPDM 1.0 – Authentication
• Allows a platform to verify the identity of the attached component.
• Redfish

• Identity is also exposed in Redfish.
• Enables a platform to determine what to do if the identity of a

component did not verify correctly.

• Cryptography
• Leverage X.509v3 certificates

4

SPDM 1.0 – Attestation
• Allows a platform to verify the state of the component.
• Multiple measurements allow platforms to verify various configurations

of the component.

• Measurements:
• Hashes and raw bit streams of various configurations of a component

• Examples of Measurement Coverage (Implementation Choices):
• Immutable Code
• Mutable Code
• Boot Stages
• Configuration Data
• State Variables

5

Background and Use Cases
• Security Requirements for PMCI Standards and Protocol, September

2018 (https://www.dmtf.org/sites/default/files/PMCI_Security-
Release_1.0.pdf)

• SPDM 1.0 – Keynote, July 2019
(https://www.dmtf.org/sites/default/files/SPDM_1.0_Keynote_APTS.pdf)

• PCIe® Component Authentication (https://pcisig.com/pcie%C2%AE-
component-authentication)

Guiding Principles
• Use MCTP message type 5 for all authentication commands including

the future ones used for setting up secure sessions

• Use MCTP message type 6 for secured transport of encapsulated
MCTP messages as appropriate (Future Version)

• Derived from USB Authentication –
• Some of the content is derived from USB Authentication

Specification Rev 1.0 with ECN and Errata through January 7, 2019
• https://www.usb.org/sites/default/files/USB%20Authentication%20Specifica

tion%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20J
anuary%207%2C%202019.zip

• Fields are defined to be little endian unless otherwise noted

7

Specifications
• DSP0274

• Security Protocol and Data Model (SPDM) Specification
• This specification contains message exchange, sequence diagrams, message

formats, and other relevant semantics for authentication, firmware
measurement, and certificate management

• DSP0275
• SPDM over MCTP Binding Specification

• This specification contains the mapping of SPDM to MCTP message type 5

PMCI MCTP Security Proposal – Diagram View

PLDM	Control	&	Discovery

PLDM	SMBIOS

PLDM	Platform	Monitoring	&	Ctrl

PLDM	BIOS	Ctrl	&	Config

PLDM	FRU	Data	Transfer

PLDM	Firmware	Update

PLDM	Redfish	Device	Enablement

MCTP	Control	(Type	=	0)

PLDM	(Type	=	1)

NC-SI	Control	(Type	=	2)

NC-SI	Passthru	(Type	=	3)

NVMe-MI®	(Type	=	4)

SPDM	(Type	=	5)

Vendor	Defined	(Type	=	7E/7F)

Management	Component	Transport	Protocol	(MCTP)

MCTP	
Control
Type	=	0

PLDM
Type	=	1

NC-SI	
Control
Type	=	2

NC-SI	
Passthru
Type	=	3

NVMe-MI®	
Type	=	4

SPDM
Type	=	5

Protected	
Messages
Type	=	6

Vendor	
Defined

Type	=	7E/7F

PCIe I2C/SMBUS Gen-Z I3C

Message	Layer

Transport	Layer

Physical	Layer

MCTP	over	PCIe	VDM MCTP	over	I2C/SMBUS MCTP	over	Gen-Z	(Future) MCTP	over	I3C	(Future)

En
ca
ps
ul
at
io
n

Future

NEW

Protection
Type = 6Security (SPDM)

Type = 5

PLDM	Messages
MCTP	Message	Types

MCTP Message Type 5 (Security Commands) Format

10

MCTP Message Payload (Variable Length)
May span one or more MCTP packets

7

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Physical Medium-Specific Header

Source
Endpoint ID

Destination
Endpoint ID

S
O
M

E
O
M

T
O

Msg
Tag

Pkt
Seq

#
MCTP

Reserved
Hdr

Version

Repeated for
each MCTP

packet

Physical Medium-Specific Trailer
Repeated for

each MCTP
packet

RequestResponseCodeSPDMVersion Param1

Param2
MCTP

Message
Body

Message Type
0000101 = 5

IC
=
0

Message Integrity Check

SPDM Specification Details

SPDM Common Format

Offset
Byte[bit]

Field Name Size
bits

Definition

0[7:4] SPDMMajorVersion 4 The major version of the SPDM
Specification.

0[3:0] SPDMMinorVersion 4 The minor version of the SPDM
Specification.

1 RequestResponseCode 8 Identifies type of request or type of
response.

2 Param1 8
The first one-byte parameter. The
contents of the parameter is specific to
the Request Response Code.

3 Param2 8
The second one-byte parameter. The
contents of the parameter is specific to
the Request Response Code.

12

High-level Authentication Sequence Diagram

NEGOTIATE_ALGORITHMS
ALGORITHMS

GET_DIGESTS
DIGESTS

If necessary

ResponderRequester

GET_VERSION
VERSION

GET_CAPABILITIES
CAPABILITIES

If supported

CHALLENGE
CHALLENGE_AUTH

GET_CERTIFICATE
CERTIFICATE

If supported
GET_MEASUREMENTS
MEASUREMENTS

RequestResponseCode Field: Part 1 Requests

DMTF Confidential

Request Code
Value

Implementation
Requirement

GET_DIGESTS 0x81 Optional

GET_CERTIFICATE 0x82 Optional

CHALLENGE 0x83 Optional

GET_VERSION 0x84 Required

GET_MEASUREMENTS 0xE0 Optional

GET_CAPABILITIES 0xE1 Required

NEGOTIATE_ALGORITHMS 0xE3 Required

VENDOR_DEFINED_REQUEST 0xFE Optional

RESPOND_IF_READY 0xFF Required

Reserved

0x80,
0x85-0xDF,
0xE2,
0xE4-0xFD

SPDM implementations
compatible with this version
shall not use the reserved
request codes.

14

RequestResponseCode Field: Part 2 Responses

Response Value Implementation
Requirement

DIGESTS 0x01 Optional

CERTIFICATE 0x02 Optional

CHALLENGE_AUTH 0x03 Optional

VERSION 0x04 Required

MEASUREMENTS 0x60 Optional

CAPABILITIES 0x61 Required

ALGORITHMS 0x63 Required

VENDOR_DEFINED_RESPONSE 0x7E Optional

ERROR 0x7F See later slide

Reserved

0x00,
0x05-0x5F,
0x62,
0x64-0x7D

SPDM implementations
compatible with this
version shall not use the
reserved response
codes.

15

Requester/Responder State Negotiation Sequence
Diagram

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.
NEGOTIATE_ALGORITHMS

GET_CAPABILITIES
CAPABILITIES

GET_VERSION
VERSION

ALGORITHMS

GET_VERSION Request

Offset Field Size
(Bytes)

Value

0 SPDMVersion 1 V1.0 = 10h
1 Request/ResponseCode 1 84h = GET_VERSION
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved

This request message shall retrieve an endpoint's SPDM version.

17

Successful VERSION Response

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10
1 RequestResponseCode 1 0x04 = VERSION
2 Param1 1 Reserved
3 Param2 1 Reserved
4 Reserved 1 Reserved

5 VersionNumberEntryCount 1 Number of version entries present in this table
(=n).

6 VersionNumberEntry1:n 2 x n 16-bit version entry.

18

VERSION Number Entry Definition

Bit Field Value

[15:12] MajorVersion
Version of the specification with changes that are incompatible with
one or more functions in earlier major versions of the specification.
[15:12]

[11:8] MinorVersion
Version of the specification with changes that are compatible with
functions in earlier minor versions of this major version specification.
[11:8]

[7:4] UpdateVersionNumber

Version of the specification with editorial updates but no functionality
additions or changes. Informational; possible errata fixes. Ignore when
checking versions for interoperability.
[7:4]

[3:0] Alpha

Pre-release work-in-progress version of the specification. Backward
compatible with earlier minor versions of this major version
specification. However, because the Alpha value represents an in-
development version of the specification, versions that share the same
major and minor version numbers but have different Alpha versions
may not be fully interoperable. Released versions must have an Alpha
value of zero.
[3:0]

19

Discovering Common Major Version

ResponderRequester

GET_VERSION (major version=1)
VERSION (10, 6, 4)

Request	version	always	
uses	major	version	=	1

Supports	major	versions	
10,	6,	4

GET_CAPABILITIES (major version=6)

CAPABILITIES

Supports	major	versions	8,	6,	3.

Version	information	
response

NEGOTIATE_ALGORITHMS (major version = 6)

ALGORITHMS ()

GET_CAPABILITIES Request

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 10h
1 Request/Response Code 1 E1h = GET_CAPABILITIES
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved

This request is used to discover endpoint protocol capabilities.

21

Successful CAPABILITIES

Offset Field Size (bytes) Value
0 SPDMVersion 1 V1.0 = 0x10
1 RequestResponseCode 1 0x61 = CAPABILITIES
2 Param1 1 Reserved
3 Param2 1 Reserved
4 Reserved 1 Reserved

5 CTExponent 1

The value of this shall be the exponent of base 2. Used to
calculate CT. The equation for CT shall be
2CT microseconds (us).
For example, if CTExponent is 10, CT is 210 = 1024 us.

6 Reserved 2 Reserved
8 Flags 4 See next slide.

22

CAPABILITIES Flags Field Definition
Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder supports the ability to cache the Negotiated State across a reset.
This allows the Requester to skip reissuing the GET_VERSION , GET_CAPABILITIES
and NEGOTIATE_ALGORITHMS requests after a reset. The Responder shall cache
the selected cryptographic algorithms as one of the parameters of the Negotiated
State. If the Requester chooses to skip issuing these requests after the reset, the
Requester shall also cache the same selected cryptographic algorithms.

0 1 CERT_CAP If set, Responder supports GET_DIGESTS and GET_CERTIFICATE messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE request message.

0 4:3 MEAS_CAP

•The Responder's MEASUREMENT capabilities.
•00b. The Responder does not support MEASUREMENTS capabilities.
•01b. The Responder supports MEASUREMENTS but cannot perform signature
generation.
•10b. The Responder supports MEASUREMENTS and can generate signatures.
•11b. Reserved

0 5 MEAS_FRESH_CAP

•0. As part of MEASUREMENTS response message, the Responder may
return MEASUREMENTS that were computed during the last Responder’s reset.
•1. The Responder can recompute all MEASUREMENTS in a manner that is
transparent to the rest of the system and shall always return
fresh MEASUREMENTS as part of MEASUREMENTS response message.

0 7:6 Reserved Reserved

1 7:0 Reserved Reserved

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved
23

Hashing Algorithm Selection Sequence Diagram

GET_DIGESTS
DIGESTS

GET_CERTIFICATE
CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES
CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256 bit nonce)
CHALLENGE_AUTH (384 bit CertChainHash,

nonce and ContextHash)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports	SHA-384
and SHA3-384

Supports SHA-256
and SHA-384

Select SHA-384Agree on SHA-384

NEGOTIATE_ALGORITHMS Request Part 1
Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0xE3 = NEGOTIATE_ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2 Length of the entire request message, in bytes. Length shall be less than 64 bytes.

6 MeasurementSpecificatio
n 1

This field is a bitmask. The values for this field shall be those defined in the
MeasurementSpecification field of GET_MEASUREMENTS request message and
MEASUREMENTS response message. The Requester may set more than one bit to
indicate multiple measurement specification support.

7 Reserved 1 Reserved

8 BaseAsymAlgo 4

•Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature
algorithms for the purposes of signature verification.
•Byte 0 Bit 0. TPM_ALG_RSASSA_2048
•Byte 0 Bit 1. TPM_ALG_RSAPSS_2048
•Byte 0 Bit 2. TPM_ALG_RSASSA_3072
•Byte 0 Bit 3. TPM_ALG_RSAPSS_3072
•Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256
•Byte 0 Bit 5. TPM_ALG_RSASSA_4096
•Byte 0 Bit 6. TPM_ALG_RSAPSS_4096
•Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384
•Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521
All other values reserved.

25

NEGOTIATE_ALGORITHMS Request Part 2
Offset Field Size

(bytes) Value

12 BaseHashAlgo 4

•Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing
algorithms .Byte 0 Bit 0. TPM_ALG_SHA_256
•Byte 0 Bit 1. TPM_ALG_SHA_384
•Byte 0 Bit 2. TPM_ALG_SHA_512
•Byte 0 Bit 3. TPM_ALG_SHA3_256
•Byte 0 Bit 4. TPM_ALG_SHA3_384
•Byte 0 Bit 5. TPM_ALG_SHA3_512
All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1 Number of Requester-supported extended asymmetric key signature algorithms (=A). A
+ E shall be less than or equal to 8.

29 ExtHashCount 1 Number of Requester-supported extended hashing algorithms (=E). A + E shall be less
than or equal to 8.

30 Reserved 2 Reserved for future use

32 ExtAsym 4*A List of Requester-supported extended asymmetric key signature algorithms. The format
of this field is described in Extended Algorithm Field Format Table.

32+4*A ExtHash 4*E List of the extended hashing algorithms supported by Requester. The format of this
field is described in Extended Algorithm Field Format Table.

26

Successful ALGORITHMS Part 1
Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x63 = ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2 Length of the response message, in bytes.

6 MeasurementSpecificationSel 1
Bit mask. The Responder shall select one of the measurement specifications supported by the Requester. Thus,
no more than one bit shall be set. The values in this field shall be those defined in
the MeasurementSpecification field.

7 Reserved 1 Reserved

8 MeasurementHashAlgo 4

•Bit mask listing SPDM-enumerated hashing algorithm for measurements. M represents the length of the
measurement hash field in measurement block structure. The Responder shall ensure the length of measurement
hash field during all subsequent MEASUREMENT response messages to the Requester until the
next ALGORITHMS response message is M.
•Bit 0. Raw Bit Stream Only, M=0
•Bit 1. TPM_ALG_SHA_256, M=32
•Bit 2. TPM_ALG_SHA_384, M=48
•Bit 3. TPM_ALG_SHA_512, M=64
•Bit 4. TPM_ALG_SHA3_256, M=32
•Bit 5. TPM_ALG_SHA3_384, M=48
•Bit 6. TPM_ALG_SHA3_512, M=64
If the Responder supports GET_MEASUREMENTS, exactly one bit in this bit field shall be set. Otherwise, the
Responder shall set this field to 0.
A Responder shall only select Bit 0 if the Responder supports Raw Bit Streams as the only form of measurement;
otherwise, it shall select one of the other bits.

12 BaseAsymSel 4
Bit mask listing the SPDM-enumerated asymmetric key signature algorithm selected. A Responder that
returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0. Other Responders shall set no more than one
bit.

16 BaseHashSel 4
Bit mask listing the SPDM-enumerated hashing algorithm selected. A Responder that
returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0. Other Responders shall set no more than one
bit.

27

The responder shall respond showing no more than one chosen algorithm per method.

Successful ALGORITHMS Part 2
Offset Field Size

(bytes) Value

20 Reserved 12 Reserved.

32 ExtAsymSelCount 1
The number of extended asymmetric key signature algorithms selected. Shall be either 0
or 1 (=A'). A Requester that returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this
field 0.

33 ExtHashSelCount 1 The number of extended hashing algorithms selected. Shall be either 0 or 1 (=E'). A
Requester that returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0.

34 Reserved 2 Reserved

36 ExtAsymSel 4*A'

The extended asymmetric key signature algorithm selected.
Responder must be able to sign a response message using this algorithm and
Requester must have listed this algorithm in the request message indicating it can verify
a response message using this algorithm. The Responder shall use this asymmetric
signature algorithm for all subsequent applicable response messages to the Requester.
The format of this field is described in Extended Algorithm Field Format Table.

36+4*A ExtHashSel 4*E'

The extended Hashing algorithm selected.
The Responder shall use this hashing algorithm during all subsequent response
messages to the Requester. The Requester shall use this hashing algorithm during all
subsequent applicable request messages to the Responder.
The format of this field is described in Extended Algorithm Field Format Table.

28

The responder shall respond showing no more than one chosen algorithm per method.

Extended Algorithm Format Field Table

Offset Field Description

0 Registry ID This field shall represent the registry or standards body. This field's
value shall be one listed in the ID column of Table 29.

1 Reserved Reserved

[2:3] Algorithm ID This field shall indicate the desired algorithm. The value of this field is
owned by the registry or standards body.

29

The responder shall respond showing no more than one chosen algorithm per method.

Registry or Standards Body ID

ID Vendor ID Len (bytes)
Registry or
standards
body name

Description

0x0 0 DMTF
DMTF does not have a Vendor ID registry. At present, DMTF
does not have any algorithms defined for use in extended
algorithms fields.

0x1 2 TCG Vendor is identified using TCG Vendor ID Registry. For
extended algorithms, see TCG Algorithm Registry.

0x2 2 USB Vendor is identified using USB's vendor ID.
0x3 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

0x4 4 IANA Vendor is identified using the Internet Assigned Numbers
Authority's Private Enterprise Number (PEN).

0x5 4 HDBaseT Vendor is identified using HDBaseT HDCD Entity.
0x6 2 MIPI Vendor is identified using MIPI’s Manufacturer ID

30

The responder shall respond showing no more than one chosen algorithm per method.

GET_DIGESTS / GET_CERTIFICATE Sequence Diagram
(Single Certificate Chain)

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000H)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of the signatures of each
certificate (X.509 containing the public
key) in the certificate chain against the
root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

GET_DIGESTS Request

This Request is used to retrieve Certificate Chain digests.

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 10h
1 Request/Response Code 1 81h = GET_DIGESTS
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved

32

Successful DIGESTS

ffset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10
1 RequestResponseCode 1 0x01 = DIGESTS
2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and
only if slot number K contains a certificate chain for the protocol
version in the SPDMVersion field. (Bit 0 is the least significant bit
of the byte.) The number of digests returned shall be equal to the
number of bits set in this byte. The digests shall be returned in
order of increasing slot number.

4 Digest[0] H Digest of the first certificate chain.

...

4 + (H * (n -1)) Digest[n-1] H Digest of the last (nth) certificate chain.

33

GET_CERTIFICATE Sequence Diagram

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength	=	0xA00
PortionLength	=	0x800

RemainderLength	=	0x200

CERTIFICATE (0x200, 0)
PortionLength	=	0x200
RemainderLength	=	0

Responder	Buffer	Size
	=	0x800

Requests	remaining	portion,	
Offset	0x800,	Length	0x0200

Requester	Buffer	Size
	=	0x1000

GET_CERTIFICATE Request

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x82 = GET_CERTIFICATE

2 Param1 1 Slot number of the target certificate chain to read from. The value in this
field shall be between 0 and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the start of the certificate chain to where the read
request message begins. The Responder should send its certificate chain
starting from this offset. For the first GET_CERTIFICATE request, the
Requester must set this field to 0. For non-first requests, Offset is the sum
of PortionLength values in all previous GET_CERTIFICATE responses.

6 Length 2

Length of certificate chain data, in bytes, to be returned in the
corresponding response. Length is an unsigned 16-bit integer. This is the
smaller of the following two values: capacity of Requester's internal buffer
for receiving Responder's certificate chain, and, RemainderLength of the
preceding GET_CERTIFICATE response. For the
first GET_CERTIFICATE request, the Requester should use the capacity of
the Requester's receiving buffer. If offset=0 and length=0xFFFF, the
Requester is requesting the entire chain

This Request is used to retrieve Certificate Chains.

35

Successful CERTIFICATE

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10
1 RequestResponseCode 1 0x02 = CERTIFICATE
2 Param1 1 Slot number of the certificate chain returned.
3 Param2 1 Reserved.

4 PortionLength 2

Number of bytes of this portion of certificate chain. This should be
less than or equal to Length received as part of the request. For
example, the Responder might set this field to a value less
than Length received as part of the request due limitations on the
Responder's internal buffer.

6 RemainderLength 2

Number of bytes of the certificate chain that have not been sent
yet after the current response. For the last response, this field
shall be 0 as an indication to the Requester that the entire
certificate chain has been sent.

8 CertChain Portion
Length

Requested contents of target certificate chain, formatted in DER.
This field is big endian.

36

CHALLENGE Sequence Diagram

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies signature
against expected values.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

CHALLENGE Request

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x83 = CHALLENGE

2 Param1 1 Slot number of the Responder's certificate chain that shall be used for
authentication.

3 Param2 1

Requested Measurement Summary Hash Type:
0 = No Measurement Summary Hash,
1 = TCB Component Measurement Hash,
0xFF = All measurements Hash.
All other values reserved.
When Responder does not support any measurements, Requester shall set
this value to 0.

4 Nonce 32 The Requester should choose a random value.

This Request is used to authenticate an endpoint.

38

Successful CHALLENGE_AUTH
Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x03 = CHALLENGE_AUTH

2 Param1 1 Shall contain the Slot number in the Param1 field of the corresponding CHALLENGE request. This value
can be used, by the Requester, to check that the certificate matched what was requested.

3 Param2 1
Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains a
certificate chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant bit of the
byte.) .

4 CertChainHash H Hash of the certificate chain used for authentication. This field is big endian. This value can be used, by
the Requester, to check that the certificate matched what was requested.

4 + H Nonce 32 Responder-selected random value.

36 + H MeasurementSummaryHash H

When the Responder does not support measurement or requested param2 = 0, the field shall be
absent.When the requested param2 = 1, this field shall be the combined hash of all measurements of all
measurable components considered to be in the TCB required to generate this response.
When the requested param2 = 1 and there are no measurable components in the TCB required to
generate this response, this field shall be 0.
When requested param2 = 0xFF; the hash is computed using Concatenation(Measurement 1,
Measurement 2,, Measurement N) of all supported measurements.

36 + 2H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength Free-form field, if present. The Responder may include Responder-specific information and/or information
defined by its transport.

38 + 2H
+ OpaqueLength Signature S

S is the size of the asymmetric signing algorithm output the Responder selected via the
last ALGORITHMS response message to the Requester. Signature generation and verification processes
are defined in the CHALLENGE_AUTH Signature generation and CHALLENGE_AUTH
Signature verification clauses, respectively..

39

Possible Request Orderings
The possible request orderings after Power on Reset are listed below explicitly:
• GET_VERSION, GET_CAPABILITIES, NEGOTIATE_ALGORITHMS, GET_DIGESTS,

GET_CERTIFICATE, CHALLENGE
• GET_VERSION, GET_CAPABILITIES, NEGOTIATE_ALGORITHMS, GET_DIGESTS,

CHALLENGE
• GET_VERSION, GET_CAPABILITIES, NEGOTIATE_ALGORITHMS, CHALLENGE
• GET_DIGESTS, GET_CERTIFICATE, CHALLENGE
• GET_DIGESTS, CHALLENGE
• GET_DIGESTS
• CHALLENGE

Request ordering and message transcript computation
rules for M1/M2 Part 1
Requests Implementation Requirements M1/M2 = Concatenate (A, B, C)
Power on Reset NA M1/M2 = null

GET_VERSION issue

The Requester may choose to issue this
request any time, to allow Requester /
Responder to determine an agreed
upon Negotiated state. A Requester
may detect out of synch condition
typically when signature verification fails
or when the Responder provides an
unexpected error response.

M1/M2 = null

GET_VERSION,
GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS

Requester shall always issue these
requests in the order shown.

A = Concatenate (GET_VERSION, VERSION,
GET_CAPABILITIES, CAPABILITIES,
NEGOTIATE_ALGORITHMs, ALGORITHMS)

GET_VERSION,
GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS

Requester may skip issuing these
requests after a new Power on Reset, if
the Responder has previously
indicated CACHE_CAP = 1. In this case
the Requester and Responder shall
proceed with the previously Negotiated
State

A = null

41

Request ordering and message transcript computation
rules for M1/M2 Part 2

Requests Implementation Requirements M1/M2 = Concatenate (A, B, C)

GET_DIGEST,
GET_CERTIFICATE

Requester shall always issue these requests
in the order shown
after NEGOTIATE_ALGORITHMS request
completion or immediately after Power on
Reset if it chose to skip the previous three
requests.

B = Concatenate (GET_DIGEST, DIGEST,
GET_CERTFICATE, CERTIFICATE)

GET_DIGEST,
GET_CERTFICATE

Requester may choose to skip both requests
after a new Power on Reset if it is capable of
using previously cached response to these
requests.

B = Null

GET_DIGEST,
GET_CERTIFICATE

Requester may choose to skip
GET_CERTIFICATE request after a new
Power on Reset if it is capable of using
previously cached CERTIFICATE response.

B = (GET DIGEST, DIGEST)

CHALLENGE
Requester shall issue this request to
complete security verification of current
requests and responses.

C = (CHALLENGE, CHALLENGE_AUTH).

CHALLENGE completion Completion of CHALLENGE resets M1 and
M2 M1/M2 = null

CHALLENGE

Requester may choose to skip this request
and forgo security verification of previous
requests and responses. Requester may
typically skip CHALLENGE when it
issues GET_DIGEST directly after Power on
Reset.

NA

GET_MEASUREMENTS

If the Requester chooses to
issue GET_MEASUREMENTS and
skips CHALLENGE completion, M1 and M2
are reset to null

M1/M2 = null

42

GET_MEASUREMENTS Sequence Diagram

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

GET_MEASUREMENTS with and without Signature
Sequence Diagram

GET_MEASUREMENTS (n-1, NoSig)
MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)
MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)
MEASUREMENTS (1, NoSig)

MEASUREMENT
response 1 with no

signature

...
...

MEASUREMENT response
n-1 with no signature

GET_MEASUREMENT
request 1 with no
signature request

GET_MEASUREMENT
request n-1 with no
signature request

GET_MEASUREMENT
request n with signature

request
MEASUREMENT response
n with signature computed

as described

Requester

Verify Signature computed
as described

GET_MEASUREMENTS Request

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10
1 RequestResponseCode 1 0xE0 = GET_MEASUREMENTS
2 Param1 1 Request attributes.

3 Param2 1

Measurement operation.
A value of 0x0 shall query the Responder for the total number of
measurements available.
A value of 0xFF shall request all measurements.
A value between 0x1 and 0xFE inclusively shall request the
measurement at the index corresponding to that value.

4 Nonce 32 The Requester should choose a random value. This field is only
present if a signature is required on the response.

This Request is used to retrieve measurements of mutable firmware
component(s) that the recipient endpoint is executing.

Measurements on their own are one of several methods to provide identity.
Signing shall use the device private key.

45

GET_MEASUREMENT Request Attributes

it(s) Value Description

0 1

If the Responder can generate a signature as indicated
in CAPABILITIES message, this bit's value shall indicate to the Responder
to generate a signature. The Responder shall generate a signature in the
corresponding response. The Nonce field shall be present in the request.

0 0

This bit's value shall be used for Responders incapable of generating a
signature as indicated in CAPABILITIES message. For Responders
capable of signature generation, this bit's value shall indicate the Requester
does not want a signature. The Responder shall not generate a signature in
the response. The Nonce field shall be absent in the request.

[7:1] Reserved Reserved

46

Successful MEASUREMENTS

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x60 = MEASUREMENTS

2 Param1 1
When Param2 in the requested measurement operation is 0, this parameter shall
return the total number of measurement indices on the device. Otherwise, this field is
reserved.

3 Param2 1 Reserved

4 NumberOfBlocks 1
Number of measurement blocks (N) in MeasurementRecord. This field shall reflect
the number of measurement blocks in MeasurementRecord. If Param2 in the
requested measurement operation is 0, this field shall be 0.

5 MeasurementRecordLength 3 Size of the MeasurementRecord field in bytes. If Param2 in the requested
measurement operation is 0, this field shall be 0.

8 MeasurementRecord L=Measurement
RecordLength

Concatenation of all Measurement Blocks that correspond to the requested
Measurement operation. The Measurement Block structure is defined in Measurement
block.

8 + L Nonce 32 The Responder should choose a random value.

40 + L OpaqueLength 2 Size of the OpaqueData field in bytes. The value shall not be greater than 1024 bytes.

42 + L OpaqueData OpaqueLength Free-form field, if present. The Responder may include Responder-specific information
and/or information defined by its transport.

42 + L +
OpaqueLength Signature S

Signature of the GET_MEASUREMENTS Request and MEASUREMENTS Response
messages, excluding the Signature field and signed using the device private key (slot 0
leaf certificate private key). The Responder shall use the asymmetric signing algorithm
it selected during the last ALGORITHMS response message to the Requester and S is
the size of that asymmetric signing algorithm output.

47

Measurement Block
• Each Measurement block contains a 1-DWORD descriptor, followed by the cryptographic hash and

optionally additional information
• Logical increment of the Measurement index implies bootstrapping of firmware stages
• When returning Measurement log, the requestor specifies the Measurement index that it needs the

history for. Each event that caused changes in the Measurement hash is recorded in one
Measurement block, distinguished by the step log field.

Offset Field Size (bytes) Value
0 Index 1 Index. This field shall represent the index of the measurement.

1 MeasurementSpecific
ation 1

This field is a bitmask. The value shall indicate the measurement
specification that the requested Measurement follows and shall
match the selected measurement specification
in Algorithms message. Only one bit shall be set in the Measurement
Block.
•Bit 0 = DMTF. All other bits are reserved.

2 MeasurementSize 2 Size of Measurement, in bytes.

4 Measurement Measurement
Size For format of this field is defined by MeasurementSpecification

Measurement field format in a Measurement block when the
MeasurementSpecification field selects Bit 0 = DMTF

Offset Field Size (bytes) Value

0 DMTFSpecMeasurement
ValueType 1

•This field is composed of two parts: bit [7] indicating the
representation in DMTFSpecMeasurementValue, and bits [6:0]
indicating what is being measured
by DMTFSpecMeasurementValue. These values are set
independently. These values are interpreted as follows:[7] = 0b:
Hash
•[7] = 0b: Hash
•[7] = 1b : Raw Bit Stream
•[6:0] = 00h: immutable ROM
•[6:0] = 01h: mutable firmware
•[6:0] = 02h: hardware configuration, such as straps, debug modes
•[6:0] = 03h : firmware configuration, e.g., configurable firmware
policy
All other values reserved.

1 DMTFSpecMeasurement
ValueSize 2

Size of DMTFSpecMeasurementValue, in bytes.
When DMTFSpecMeasurementValueType[7] = 0b: Hash,
the DMTFSpecMeasurementValueSize shall be derived from the
measurement hash algorithm returned in the ALGORITHM response
message.

3 DMTFSpecMeasurement
Value

DMTFSpec
Measurement
ValueSize

DMTFSpecMeasurementValueSize bytes of cryptographic hash or
Raw Bit Stream, as indicated in DMTFSpecMeasurementType[7].

49

ERROR & ERRORCODE

Offset Field Size
(bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x7F = ERROR

2 Param1 1 Error Code. See Table 27.

3 Param2 1 Error Data. See Table 27.

4 ExtendedErrorData 0-32 Optional extended data. See Table 27.

50

Error code Value Description Error data ExtendedErrorData

Reserved 00h Reserved Reserved Reserved

InvalidRequest 01h One or more request fields
are invalid 0x00 No extended error data is

provided.

Reserved 02h Reserved Reserved Reserved

Busy 03h

The Responder received
the request message and
the Responder decided to
ignore the request
message, but the
Responder may be able to
process the request
message if the request
message is sent again in
the future.

0x00 No extended error data is
provided.

ERRORCODE contd.

Error code Value Description Error data ExtendedErrorData

UnexpectedRequest 04h

The Responder received an
unexpected request message.
For
example, CHALLENGE before N
EGOTIATE_ALGORITHMS.

0x00 No extended error data is
provided.

Unspecified 05h Unspecified error occurred. 00h No extended error data is
provided.

Reserved 06h Reserved 00h Reserved

UnsupportedRequest 07h
The RequestResponseCode in
the Request message is
unsupported.

RequestResponseCode in the Request
message.

No extended error data is
provided

Reserved 08h-40h Reserved Reserved Reserved

MajorVersionMismatch 41h Requested SPDM Major
Version is not supported. 00h No extended error data

provided.

ResponseNotReady 42h See RESPOND_IF_READY c
lause. 00h See Table 28.

RequestResynch 43h

Responder is requesting
Requester to
reissue GET_VERSION in
order to resynch.

0x00 No extended error data
provided.

Reserved 44h-FEh Reserved Reserved. Reserved

Vendor/Other
Standards Defined FFh Vendor or Other Standards

defined

This field shall indicate the registry
or standard body using one of the
values in the ID column of Table 29.

See Table 30 for format
definitio

51

Timeouts and Retries

Non-crypto	operation	ex.	GET_VERSION
Retry	
timer	
T1	

expires retry	GET_VERSION

...

Crypto	operation	ex.	CHALLENGE
Retry	
timer	
T2

expires retry	CHALLENGE
...

T1	=	RTT	(round	trip	time)	+	ST1	(non-crypto	processing	time	at	responder)

T2	=	RTT	(round	trip	time)	+	CT	(crypto	processing	time	at	responder)

Timeouts and Retries
Error (ResponseNotReady); RESPOND_IF_READY

Timing Specification Part 1

Timing Parameter Ownership Value Units Description

RTT Requester See
Description

See
Description

This is the worst case round trip transport timing.
The max value shall be the worst case total time for the complete
transmission and delivery of an SPDM message round trip at the
transport layer(s). The actual value for this parameter is
transport/media specific.

ST1 Responder 100 ms

This shall be the maximum amount of time the Responder has to
provide a response to requests that do not require cryptographic
processing, such as GET_CAPABILITIES, GET_VERSION or
NEGOTIATE_ALGORITHMS.

T1 Requester RTT + ST1 ms

This shall be the minimum amount of time the Requester shall wait
before issuing a retry for requests that do not require cryptographic
processing.
For details, see ST1.

CT Responder 2CTExponent us

This is the cryptographic timeout in microseconds. CTExponent is
reported in the CAPABILITIES message.
This timing parameter shall be the maximum amount of time the
Responder has to provide any response requiring cryptographic
processing, such as GET_MEASUREMENTS and CHALLENGE.

T2 Requester RTT + CT us

This shall be the minimum amount of time the Requester shall wait
before issuing a retry for requests that require cryptographic
processing.
For details, see CT.

54

Timing Specification Part 2

Timing Parameter Ownership Value Units Description

RDT Responder 2RDTExponent us

This is the Recommended Delay in microseconds. When the Responder is unable to
complete cryptographic processing response within the CT time, it shall
provide RDTExponent as part of the ERROR Response. See Table 28 for
the RDTExponent value.
For details, see ErrorCode=ResponseNotReady.

WT Requester RDT us

This is the amount of time the Requester should wait before
issuing RESPOND_IF_READY request. The Requester shall measure this time
parameter from the reception of the ERROR response to the transmission
of RESPOND_IF_READY request. The Requester may take into account the
transission time of the ERROR from the Responder to Requester when
calculating WT.
For details, see RDT.

WTMax Requester (RDT * RDTM) -
RTT us

This is the maximum wait time the Requester has to to
issue RESPOND_IF_READY request unless the Requester issued a
successful RESPOND_IF_READY earlier. After this time the Responder is allowed
to drop the response. The Requester shall take into account the transmission time of
the ERROR from the Responder to Requester when calculating WTMax. The value
of RDTM is given in Table 28. The Responder should
ensure WT_{Max} does not result less than WT in determination
of RDTM.
For details, see ErrorCode=ResponseNotReady.

55

Retries and timing
• SPDM requests may be retried; SPDM responses may not.
• There are two SPDM request retry timers:

• T1 – for SPDM requests that do not involve cryptographic processing
• T2 – for SPDM requests that require cryptographic processing

• The T1 retry timer is the sum of:
• RTT – worst-case round-trip time, which is transport layer specific
• ST1 – amount of time responder can take to process non crypto requests

• The T2 retry timer is the sum of:
• RTT
• CT – amount of time responder can take to process crypto requests

Retries and timing
• An SPDM request that requires cryptographic processing may take

longer than expected at the responder
• A responder may provide a Response Not Ready error within T2 and

let the requester know when to try again with a Respond if Ready
request

• With Response Not Ready, the responder provides RDTexponent, a
recommended delay to the requester; and RDTM, a multiplier

• The requester may retry with Respond if Ready within a window
bounded by WT and WTMax:
• WT = 2**RDTexponent
• WTMax = (Multiplier * WT) - RTT

Future Work
• SPDM1.1 Scope

• Protection: Key establishment and agreement / Encryption / Integrity
• Mutual Authentication

• SPDM1.x Scope
• Measurement log
• Set certificate command
• Measurement manifest (Local attestation)

