
Redfish Interoperability Profiles
DMTF Scalable Platforms Management Forum

DSP2072 v1.0 (December 2017)

Copyright 2018

https://www.dmtf.org/about/policies/copyright


Redfish Interoperability Profiles
• Provide common ground for implementers, software developers, and users

• A profile applies to a particular category or class of product (e.g. “Front-end web
server”, “Enterprise-class database server”, “Rack-level PDU”)

• It specifies Redfish implementation requirements, but is not intended to mandate
underlying hardware/software features of a product

• Provides a target for implementers to meet customer requirements
• Provides baseline expectations for client software utilizing Redfish
• Enables customers to easily specify desired Redfish functionality in RFQs

• Profile published as a machine-readable JSON document
• Document must also be human-readable
• Can be created by dev/ops personnel and non-CS professionals

• Profiles can be authored by DMTF, partner organizations, and others
• Open source tools available to produce documentation and test conformance

Copyright 2018



Redfish Interoperability Profile Ecosystem
• Profile document specification (DSP0272)

• JSON document specified by DMTF document DSP0272
• https://www.dmtf.org/sites/default/files/standards/documents/DSP0272_1.0.0_0.pdf

• Profile bundle (DSP8013)
• https://www.dmtf.org/sites/default/files/standards/documents/DSP8013_2017.1.zip
• Includes schema (RedfishProfile.v1_0_0.json) for Profile document
• Includes sample profile
• Future releases will include DMTF (re)-published Profiles

• Profile Interop Validator – open source tool
• Uses Profile document to check an implementation for conformance
• https://github.com/DMTF/Redfish-Interop-Validator

• Documentation Generator – open source tool
• Combines Profile document with Redfish schemas to produce “user guide”
• https://github.com/DMTF/Redfish-Tools

3Copyright 2018

https://www.dmtf.org/sites/default/files/standards/documents/DSP0272_1.0.0_0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP8013_2017.1.zip
https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/DMTF/Redfish-Tools


JSON DOCUMENT FORMAT
Redfish Interoperability Profiles

4Copyright 2018



Redfish Interoperability Profile Document
• JSON document with simple structure to list resources and properties

• Format allows easy comparison to a retrieved Redfish payload
• Ex. “PropertyRequirements” object with Redfish properties 

• Can build definition on top of other Profile(s)
• Apply requirements to Redfish Protocol features, Resources (Schemas), 

Properties, Actions and Registries.
• Versioning support in both Profile and Resource requirements

• Profile is a static definition once published
• Does not increase in scope as schemas are revised

• Recommend that changes to profile occur with “major” revisions
• Allow for errata, but Profile should be built for longevity
• Example: “Basic Server v1”, “Basic Server v2”

5Copyright 2018



Profile document structure
• Each section a JSON object
• Resource (schema) and 

Registry objects follow the 
names of the defining schema
• e.g. “EthernetInterface”

• Property-level requirement 
nested within Resource 
requirements, named to follow 
the defined property name

• e.g. “AssetTag”, “SpeedMbps”

6

Resource #1 requirements

Registry #1 requirements

Registry #N requirements

Resource #2 requirements

Resource #N requirements

…

Copyright 2018



Profile-level information and Protocol Requirements
“SchemaDefinition”: “RedfishInteroperabilityProfile.v1_0_0”,

"ProfileName": "Anchovy",

“ProfileVersion": "1.0.2",

“OwningEntity": "Pizza Box Project",

"Purpose": "This is a sample Redfish profile.",

"ContactInfo": "pizza@contoso.com",

"RequiredProfiles": {

"DMTFBasic": {

"MinVersion": "1.0.0",

},

“ContosoPizza”: {

“Repository”: “http://contoso.com/profiles”,

“MinVersion”: “1.0.0”

}

},

“Protocol”: {

“MinVersion”: “1.0.0”,

“Discovery”: “Mandatory”,

“HostInterface”: “Recommended”

},

• Basic information
• Name, version, author, etc.

• Ability to include other Profiles
to build upon past work

• But profile cannot loosen
requirements included from
other profiles, only add
additional requirements

• “Protocol” requirements are
Redfish features which are not
part of the JSON response
payload(s).

7Copyright 2018



Resource (schema) level requirements

"ContosoTimeMachine": {

“Repository": “http://www.contoso.com/schemas",

“ReadRequirement”: “Mandatory”,

"MinVersion": "1.2.0",

“UpdateResource”: true,

"PropertyRequirements": {

"CurrentTime": {},

"DestinationTime": {},

"IsGrandfatherAlive": {

“ReadRequirement": "Recommended"

},

"ParadoxDetected": {

“ReadRequirement": "IfImplemented"

}

}

}

• Organized by schema name
• Profile can include requirements

from any number of standard or
OEM-defined schemas

• Resource level “ReadRequirement”
sets need for schema-required
properties

• Create/Update/Delete support can
be required.

• Property level requirements
contained in resource-level object

• “MinVersion” – minimum schema
version required

8Copyright 2018



Property level - basic features

"ComputerSystemCollection": {

“PropertyRequirements”: {

"Members": {

"MinCount": 1

}

}

},

"ComputerSystem": {

"MinVersion": "1.1.0",

"PropertyRequirements": {

“SystemType”: {

“Values”: [“Physical”],

“ReadRequirement”: “Mandatory”

},

“AssetTag": {

“ReadRequirement": “Mandatory“,

“WriteRequirement”: “Mandatory”

},

"Manufacturer": {},

"Model": {

“ReadRequirement": "Recommended"

},

. . . 

• JSON objects follow property names
• Un-listed properties have no requirements
• Empty objects are by default ‘Mandatory’

• “ReadRequirement”:
• Default value is ‘Mandatory’
• Recommended, If-Implemented, and

Conditional support
• “WriteRequirement”:

• If property must support PATCH or PUT
• “MinCount”:

• Minimum count of non-NULL items in array
• “Values”:

• Require specific or “any of” values for a
property. Also supports arrays

9Copyright 2018



Property level – Conditional requirements
"EthernetInterface": {

"PropertyRequirements": {

"MACAddress": {},

“HostName": {

“ReadRequirement": "Recommended",

“ConditionalRequirements": [{

"SubordinateToResource": 

["ComputerSystem“,

”EthernetInterfaceCollection”],

“ReadRequirement": “Mandatory"

}]

},

"IPv4Addresses": {

“ReadRequirement": “Mandatory",

"MinCount": 1,

“ConditionalRequirements": [{

"SubordinateToResource": 

["ComputerSystem“,

”EthernetInterfaceCollection”],

“ReadRequirement": “Mandatory“

"MinCount": 2

}]

}

• ‘ConditionalRequirements’
apply to the property if one or
more conditions are met

• ‘Purpose’ text provides
justification for the conditional
requirement

• SubordinateToResource
• If resource matches the parent

hierarchy, requirement applies
• Comparison Property / Values

• Using another property within
the resource as key, add
requirement if value of the key
matches a list

10Copyright 2018



Property level – ‘Conditional’ Value example
"IndicatorLED": {

“ReadRequirement": "Recommended",

“WriteRequirement”: “Recommended”,

"ConditionalRequirements": [{

"Purpose": "Physical and composed Systems 
must have a writable Indicator LED“,

“ReadRequirement": “Mandatory",

“WriteRequirement”: “Mandatory”,

“Comparison": "AnyOf",

“CompareProperty": "SystemType",

“CompareValues": ["Physical", "Composed“]

}]

}

• ‘Comparison’ provides test
• ‘CompareProperty’ name

• May be at current object level
or in parent objects (no peers)

• ‘CompareValues’ – one or more
values to test against

• Requirement – applies if
condition met

• ‘ConditionalRequirements’ is an
array, allowing multiple
conditions for a given property

11Copyright 2018



Action level features
“ActionRequirements": {

"Reset": {

“ReadRequirement": “Mandatory",

"Parameters": {

"ResetType": {

“ParameterValues": ["ForceOff", "PowerCycle"],

“RecommendedValues”: [“On”, “GracefulShutdown”]

}

}

}

}

• Organized by Action name within 
each Resource (schema)

• Allows for parameter requirements
• Required values
• Recommended values

12Copyright 2018



Registry level features
"Registries": {

"Base": {

"MinVersion": "1.0.0",

“Repository": “http://redfish.dmtf.org/registries",

"Messages": {

"Success": {},

"GeneralError": {},

"Created": {},

"PropertyDuplicate": {}

}

},

"ContosoPizzaMessages": {

“Repository": “http://contoso.com/registries",

"ReadRequirement": “Mandatory"

}

}

• Organized by registry 
name

• Allows for multiple 
registries

• Ability to include OEM 
registries

• Resource level 
“ReadRequirement” sets 
need for full Registry 
requirement

• Messages listed with 
individual ‘Requirement’ 
as needed

13Copyright 2018



Q&A & Discussion

14Copyright 2018


	Redfish Interoperability Profiles
	Redfish Interoperability Profiles
	Redfish Interoperability Profile Ecosystem
	Json document format
	Redfish Interoperability Profile Document
	Profile document structure
	Profile-level information and Protocol Requirements
	Resource (schema) level requirements
	Property level - basic features
	Property level – Conditional requirements
	Property level – ‘Conditional’ Value example
	Action level features
	Registry level features
	Q&A & Discussion



