

2 Document Number: DSP1044

1

3 Date: 2010-04-22

4 Profile Version: 1.0.0

5 Processor Resource Virtualization Profile

6 **Document Type: Specification**

7 Document Status: DMTF Standard

8 **Document Language: E**

9 Copyright Notice

- 10 Copyright ©2010 Distributed Management Task Force, Inc. (DMTF). All rights reserved.
- 11 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
- 12 management and interoperability. Members and non-members may reproduce DMTF specifications and
- documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
- time, the particular version and release date should always be noted.
- 15 Implementation of certain elements of this standard or proposed standard may be subject to third party
- 16 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
- 17 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
- or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
- inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
- any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
- 21 disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
- 22 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
- party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
- owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
- 25 withdrawn or modified after publication, and shall be indemnified and held harmless by any party
- 26 implementing the standard from any and all claims of infringement by a patent owner for such
- 27 implementations.
- 28 For information about patents held by third-parties which have notified the DMTF that, in their opinion,
- 29 such patent may relate to or impact implementations of DMTF standards, visit
- 30 http://www.dmtf.org/about/policies/disclosures.php.

CONTENTS

32	1	Scope			
33	2	Normative references	7		
34	3	Terms and definitions			
35	4	Symbols and abbreviated terms			
36	5	Synopsis			
		Description			
37 38	6	6.1 General			
39		6.2 Processor resource virtualization class schema			
40		6.3 Resource pools			
41		6.4 Resource allocation			
42	7	Implementation			
43	,	7.1 Allocation units			
44		7.2 Host resources			
45		7.3 Resource pools			
46		7.4 Aggregation of host resources			
47		7.5 Processor resource pool hierarchies			
48		7.6 Default processor resource pool			
49		7.7 Processor resource pool management			
50		7.8 Processor resource allocation			
51		7.9 Virtual processor			
52	8	Methods			
53	Ū	8.1 Profile conventions for operations			
54		8.2 CIM_Processor for host processors			
55		8.3 CIM_Processor for virtual processor			
56		8.4 CIM_ReferencedProfile			
57		8.5 CIM_RegisteredProfile	24		
58		8.6 CIM_SystemDevice for host processors	24		
59		8.7 CIM_SystemDevice for virtual processors	25		
60	9	Use cases	25		
61		9.1 Use case 1 – Increase the allocated processor capacity to a virtual machine in MHz	28		
62		9.2 Use case 2 – Increase the allocated processor capacity to a virtual machine in percent			
63		9.3 Use case 3 - Add a virtual processor to a virtual system			
64		9.4 Use case 4 – Allocation of processor resource by weight			
65		9.5 Use case 5 – Allocation of an additional processor resource	32		
66	10	CIM elements	_		
67		10.1 CIM_Component for resource pool			
68		10.2 CIM_ElementAllocatedFromPool for allocated virtual processors			
69		10.3 CIM_ElementAllocatedFromPool for resource pool hierarchies			
70		10.4 CIM_ElementSettingData for processor resource allocation			
71		10.5 CIM_ElementSettingData for processor resource pool			
72		10.6 CIM_HostedDependency			
73		10.7 CIM_Processor (host processor)			
74		10.8 CIM_Processor (virtual processor)			
75 70		10.9 CIM_RegisteredProfile			
76 77		10.10 CIM_ResourceAllocationFromPool			
77 70		10.11 CIM_ResourceAllocationSettingData			
78 79		10.12 CIM_ResourcePool			
-		10.13 CIM_SettingsDefineState			
80 81		10.14 CIM_SystemDevice for nost processor			
	A K I R	— ,			
82	ANI	NEX A (Informative) Change Log	43		
83					

85	Figure 1 – Processor Resource Virtualization Profile: Class Diagram	12
86	Figure 2 – Processor Resource Virtualization Profile: Instance diagram	26
87	Figure 3 – Defined state	27
88	Figure 4 – Active state	27
89	Figure 5 – CIM_ModifyResourceSettings – Before	29
90	Figure 6 – RASD to Modify Resources	30
91	Figure 7 – CIM_ModifyResourceSettings - After	31
92	Figure 8 – CIM_AddResourceSettings - Before	32
93	Figure 9 – RASD to add processor	33
94	Figure 10 – CIM_AddResourceSettings - After	34
95		
96	Tables	
	Table 1 – Related profiles	11
	Table 2 – Acronyms for RASD adapted for the representation of various flavors of allocation data	
	Table 3 – CIM Elements: Processor Resource Virtualization Profile	
	Table 4 – Association: CIM_Component for resource pool	
	Table 5 – Association: CIM ElementAllocatedFromPool	
	Table 6 – Association: CIM_ElementSettingData	
	Table 7 – Association: CIM_ElementSettingData for processor resource allocation	
	Table 8 – Association: CIM_ElementSettingData (Processor Resource Pool)	
	Table 9 – Association: CIM_HostedDependency	
	Table 10 – Class: CIM_Processor (host processor)	
	Table 11 – Class: CIM_Processor (virtual system)	
	Table 13 – Class: CIM_RegisteredProfile	
	Table 14 – Association: CIM_ResourceAllocationFromPool	
	Table 15 – Class: CIM ResourceAllocationSettingData	
	Table 16 – Class: CIM_ResourcePool	
	Table 17 – Association: CIM_SettingsDefineState	
	Table 18 – Association: CIM_SystemDevice (Host Processor)	
	Table 19 – Association: CIM_SystemDevice (Virtual Processor)	

97	Foreword			
98	This profile was prepared by the Server Virtualization Partitioning and Clustering workgroup of the DMT	F.		
99 100	The SVPC work group acknowledges the following people for their contributions to the development this profile.			
101	Editors:			
102	Michael Johanssen – IBM			
103	Lawrence Lamers – VMware Inc.			
104	Carl Waldspurger - VMware Inc.			
105	Contributors:			
106	Gareth Bestor – IBM			
107	Ron Goering – IBM			
108	Daniel Hiltgen –VMware			
109	Ron Doyle – IBM			
110	Rene Schmidt – VMware Inc.			
111	Steffen Grarup – VMware Inc.			
112	Hemal Shah – Broadcom			
113	Fred Maciel – Hitachi Ltd.			
114	Lawrence Lamers – VMware Inc.			
115	Andreas Maier – IBM			
116	John Parchem – Microsoft Corporation			
117	George Ericson – EMC			
118	Oliver Benke – IBM			
119	John Leung – Intel Corporation			
120	James Fehlig – Novell			
121	Nihar Shah – Microsoft Corporation			
122	Shishir Pardikar – Citrix Systems Inc.			
123	Stephen Schmidt – IBM			
124	Mark Hapner – Sun Microsystems			
125	Dave Barrett – Emulex			
126	John Suit – Fortisphere			
127	Jeff Wheeler – Cisco			
128	Mark Johnson – IBM			

129	Introduction		
130 131 132 133	The information in this specification should be sufficient for a provider or consumer of this data to unambiguously identify the classes, properties, methods, and values that shall be instantiated and manipulated to represent and manage a basic server and subsystems that are modeled using the DMTF Common Information Model (CIM) core and extended model definitions.		
134 135	The target audience for this specification is implementers who are writing CIM-based providers or consumers of management interfaces that represent the components described in this document.		

Scope

136

137

165

Processor Resource Virtualization Profile

138 139	This profile is a component profile that extends the management capabilities of the specialized profiles by adding the support to represent and manage the allocation of processor resources to virtual systems.
140	2 Normative references
141 142 143	The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
144 145	DMTF DSP0004, CIM Infrastructure Specification 2.5 http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf
146 147	DMTF DSP0200, CIM Operations over HTTP 1.3 http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
148 149	DMTF DSP1001, Management Profile Specification Usage Guide 1.0 http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf
150 151	DMTF DSP1022, CPU profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf
152 153	DMTF DSP1033, Profile Registration profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf
154 155	DMTF DSP1041, Resource Allocation profile 1.1 http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf
156 157	DMTF DSP1042, System Virtualization profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1042_1.0.pdf
158 159	DMTF DSP1043, Allocation Capabilities profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf
160 161	DMTF DSP1057, Virtual System profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1057_1.0.pdf
162 163	DMTF DSP1059, Generic Device Resource Virtualization profile 1.0 http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf
164	ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

166 3 Terms and definitions

- For the purposes of this document, the following terms and definitions apply. For the purposes of this
- document, the terms and definitions given in <u>DSP1033</u> and <u>DSP1001</u> also apply.
- 169 **3.1**
- 170 can
- 171 used for statements of possibility and capability, whether material, physical, or causal
- 172 **3.2**
- 173 cannot
- 174 used for statements of possibility and capability, whether material, physical, or causal
- 175 **3.3**
- 176 conditional
- 177 indicates requirements to be followed strictly to conform to the document when the specified conditions
- 178 are met
- 179 **3.4**
- 180 mandatory
- 181 indicates requirements to be followed strictly to conform to the document and from which no deviation is
- 182 permitted
- 183 **3.5**
- 184 **may**
- indicates a course of action permissible within the limits of the document
- 186 **3.6**
- 187 need not
- indicates a course of action permissible within the limits of the document
- 189 **3.7**
- 190 optional
- indicates a course of action permissible within the limits of the document
- 192 **3.8**
- 193 referencing profile
- indicates a profile that owns the definition of this class and can include a reference to this profile in its
- 195 "Referenced Profiles" table
- 196 **3.9**
- 197 shall
- 198 indicates requirements to be followed strictly to conform to the document and from which no deviation is
- 199 permitted
- 200 3.10
- 201 shall not
- 202 indicates requirements to be followed strictly to conform to the document and from which no deviation is
- 203 permitted
- 204 3.11
- 205 should
- 206 indicates that among several possibilities, one is recommended as particularly suitable, without
- 207 mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

- 208 **3.12**
- 209 should not
- 210 indicates that a certain possibility or course of action is deprecated but not prohibited
- 211 **3.13**
- 212 unspecified
- 213 indicates that this profile does not define any constraints for the referenced CIM element or operation
- 214 **3.14**
- 215 client
- 216 an application that exploits facilities specified by this profile
- 217 **3.15**
- 218 implementation
- 219 a set of CIM providers that realize the classes specified by this profile
- 220 **3.16**
- 221 this profile
- 222 this DMTF management profile the Processor Resource Virtualization profile
- 223 **3.17**
- 224 host processor resource
- 225 host processor resources are processor devices or computing resource contained by the host system that
- 226 may be allocated with either exclusive or shared access to provide processing resources to a processor
- resource pool or a virtual system.
- 228 **3.18**
- 229 host system
- 230 The scoping system containing resources that may be allocated and/or virtualized.
- 231 **3.19**
- 232 processor resource
- 233 a processor device or computing resource as seen by a consumer
- 234 **3.20**
- 235 processor resource allocation
- 236 the allocation of a processor resource from a processor resource pool to a virtual system
- 237 **3.21**
- 238 processor resource allocation request
- 239 a request for a processor resource allocation
- 240 **3.22**
- 241 processor resource pool
- 242 a resource pool that represents processor resources available for processor resource allocation
- 243 **3.23**
- 244 processor resource pool configuration service
- a configuration service that supports the addition or removal of host storage processor resources to or
- 246 from a processor resource pool, and the creation or deletion of concrete subpools of a processor
- 247 resource pool

- 248 **3.24**
- 249 virtual computer system
- 250 the concept of a virtual system as applied to a computer system.
- Other common industry terms are virtual machine, hosted computer, child partition, logical partition,
- 252 domain, guest, and container.#
- 253 **3.25**
- 254 virtual processor
- 255 the instantiation of the allocated host processor resources that is exposed to a virtual system via a logical
- 256 processor device.

257 4 Symbols and abbreviated terms

- 258 The following abbreviations are used in this document.
- 259 **4.1**
- 260 **CIM**
- 261 Common Information Model
- 262 **4.2**
- 263 **CIMOM**
- 264 CIM object manager
- 265 **4.3**
- 266 **RASD**
- 267 CIM_ResourceAllocationSettingData
- 268 **4.4**
- 269 **VS**
- 270 virtual system

271 5 Synopsis

- 272 **Profile Name:** Processor Resource Virtualization
- 273 **Version:** 1.0.0
- 274 **Organization:** DMTF
- 275 CIM schema version: 2.21
- 276 Central Class: CIM_ResourcePool
- 277 Scoping Class: CIM_System
- 278 This profile is a component profile that defines the minimum object model needed to provide for the CIM
- 279 representation and management of the virtualization of processors.
- Table 1 lists other profiles that this profile depends on, or that may be used in context of this profile.

284

285

286

287

288

289 290

291

292

293

294 295

296

297

298

Table 1 - Related profiles

Profile Name	Organization	Version	Relationship	Description
Resource Allocation	DMTF	1.1	Specializes	The profile that adds the capability to represent the allocation of resources to consumers. See <u>DSP1041</u> .
Allocation Capabilities	DMTF	1.0	Specializes	The profile that describes the default property values, supported property values, and range of property values for a resource allocation request. See DSP1043 .
Profile Registration	DMTF	1.0	Mandatory	The profile that specifies registered profiles. See <u>DSP1033</u> .
CPU	DMTF	1.0	Optional	The profile that adds the capability to represent processors in a managed system. See 7.2. See DSP1022 .

The CPU Profile lists additional related DMTF management profiles; these relationships are not further specified in this profile.

6 Description

This clause introduces the management domain addressed by this profile, and outlines the central modeling elements established for representation and control of the management domain.

6.1 General

In computer virtualization systems, virtual computer systems are composed of component virtual resources. This profile specifies the allocation and management of host processor resources in support of virtual processors. From an operating system or application viewpoint virtual processors are functionally equivalent to "physical" processors.

This profile applies the resource virtualization pattern defined in <u>DSP1041</u> and the allocation capabilities pattern defined in <u>DSP1043</u> to enable the management of processor resources that are allocated to virtual systems. This profile defines additional CIM elements and constraints beyond those defined in the specialized profiles. Optionally implementations may implement <u>DSP1022</u> to represent host processors.

6.2 Processor resource virtualization class schema

Figure 1 represents the class schema of this profile. It outlines the elements that are adapted by this profile. For simplicity, the prefix CIM_ has been removed from the name of the classes.

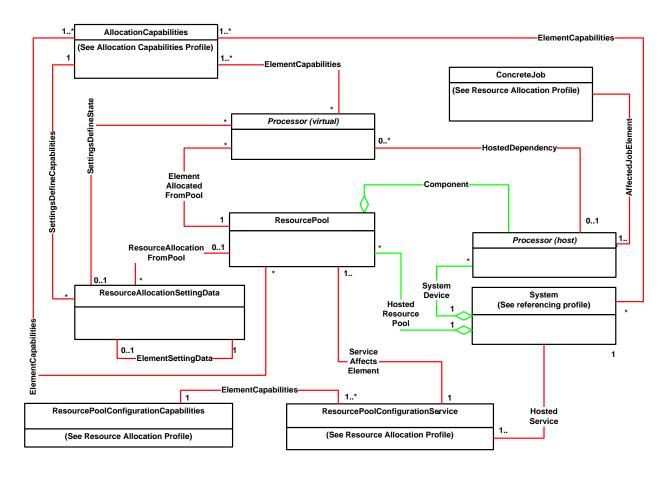


Figure 1 – Processor Resource Virtualization Profile: Class Diagram

This profile specifies the use of the following classes and associations:

- The CIM_ResourcePool class models resource pools for processor resources. Host processor resources are allocated from their resource pool and used to create the virtual processors for virtual systems
- The CIM_Component association models the relationship between processor resource pools and host processors as components of the resource pools
- The CIM_ElementAllocatedFromPool association models hierarchies of processor resource pools and modeling the relationship of processor resource pools and the virtual processors allocated from those
- The CIM_HostedResourcePool association models the hosting dependency between a processor resource pool and its host system. A host system supports at least one processor resource pool
- The CIM Processor class models the following kinds of processors:
 - processors as a device in the scope of a system, as modeled by the CIM_SystemDevice association
 - processors as a result of a processor resource allocation from a resource pool, as modeled by the CIM_ElementAllocatedFromPool association
 - processors as a component within processor resource pools, as modeled through the CIM_Component association

299

300

301

302 303

304 305

306 307

308

309310

311 312

313314

315 316

317

318 319

323

324

325

328

329

330

331 332

333

334

335

336

337

340

348

349

350 351

352

353

354

355

- The CIM_ResourceAllocationSettingData class models processor resource allocations or processor resource allocation requests
 - The CIM_AllocationCapabilities class and the CIM_ElementCapabilities association model
 - the processor resource allocation capabilities of host systems
 - the processor resource allocation capabilities of processor resource pools
 - the mutability of existing processor resource allocations
- The CIM_SettingsDefineCapabilities association models the relation between processor resource allocation capabilities and the settings that define these capabilities
 - The CIM_ResourcePoolConfigurationService models configuration services for processor resource pools and the CIM_ResourcePoolConfigurationCapabilities class modeling their capabilities
 - The CIM_ConcreteJob class and the CIM_AffectedJobElement association models asynchronous management tasks initiated through memory resource pool configuration services

In general, any mention of a class in this document means the class itself or its subclasses. For example, a statement such as "an instance of the CIM_Processor class" implies an instance of the CIM_Processor class or a subclass of the CIM_Processor class.

6.3 Resource pools

This profile applies the concept of resource pools defined in the <u>DSP1041</u> to the resource type 3 (Processor).

6.3.1 General

- This profile uses processor resource pools as the focal point for processor allocations. A processor resource pool represents an aggregate amount of processing capacity, and keeps track of the amount of processor capacity that has been allocated to consumers such as virtual systems. A resource pool also defines the scope in which relative weights are interpreted. A resource pool represents a part or all of the aggregated processing power of a virtualization platform in an abstract sense, that is, it represents the sum of the processing power of the host resources aggregated into the resource pool and is expressed in allocation units such as MHz, percentage, or count of processors.
 - Note that the resource type of a resource pool governs the type of the resources that are allocated from the resource pool. Opposed to that the resource type of the resources that are aggregated by the resource pool may differ from the resource type of the pool. For example, a resource pool with a resource type of 3 (Processor) supports the allocation of virtual processors. However, the resources that are aggregated by that resource pool may be of a different type; for example, that resource pool might aggregate processor fragments, or it might simply represent a certain amount of processing power without representing individual processors.

6.3.2 Representation of host resources

356 A processor resource pool represents an aggregated amount of processing power provided by host resources that enables the allocation of virtual processors. However the explicit representation of the host 357 resources aggregated by a resource pool is optional: In some cases implementations may explicitly 358 represent the host resources such as for example host processors. In other cases implementations may 359 choose not to explicitly represent the host resources aggregated by a resource pool, that is, an 360 implementation may choose to model a resource pool as the sole model element that represents host 361 362 processing capacity for the support of (allocated) virtual processors, but not detail the host resources that 363 provide that processing capacity.

- 364 The processor resources of a host system can be represented by a single processor resource pool, with
- 365 capacity equal to the processing capacity of the host computer system. The processor resources of a
- 366 host computer system may be represented by multiple resource pools, providing more flexible control
- over the allocation of processor resources to virtual systems.

6.3.3 Hierarchies of processor resource pools

- 369 This profile applies the concept of resource pool hierarchies defined in DSP1041 to the processor
- 370 resource type; see the "Hierarchies of Resource Pools" subclause in DSP1041.

371 **6.4 Resource allocation**

- This profile applies the concept of device resource allocation defined in DSP1041 to the processor
- 373 resource type; see the "Device Resource Allocation" subclause in <u>DSP1041</u>.

374 **6.4.1** Processor resource allocation request

- 375 The processor requirements of a virtual system are defined as part of the "defined" virtual system
- 376 configuration; see DSP1057 for a definition of the "defined" virtual system configuration. The "defined"
- 377 virtual system configuration contains processor resource allocation requests represented as RASD
- 378 instances.

379

368

6.4.2 Processor Resource allocation

- As a virtual system is activated (or instantiated), one or more virtual processors need to be allocated as
- 381 requested by processor resource allocation requests in the virtual system definition. Processor resource
- 382 allocations are represented as RASD instances in the "state" virtual system configuration. The number of
- discrete processors exposed to the virtual system is specified by the value of the VirtualQuantity property.
- 384 The central properties describing a processor resource allocation request or a processor resource
- 385 allocation are Reservation, Limit, and Weight.
- 386 The values of both the Reservation and Limit properties are specified in allocation units as expressed by
- the value of the AllocationUnits property. Possible allocation units are a frequency (i.e., "Hertz" or "MHz"),
- a percentage (with respect to some base value such as the sum of all available processing power), or a
- 389 count (expressing a number of processors or processor fractions to be allocated).
- 390 The value of the Reservation property specifies a lower bound on the quantity of host processor
- resources available for the virtual computer system that are guaranteed to be available for use. If a virtual
- 392 computer system does not consume its full allocation of reserved resources, the host system may allow
- 393 its unused portion to be utilized by other virtual computer systems. The value of the Limit property
- 394 specifies a limit or upper bound on the quantity of host processor resources that may be consumed by the
- 395 virtual computer system. A limit is an artificial cap that may not be exceeded, even if otherwise-idle host
- 396 processor resources are available.
- 397 The value of the Weight property specifies the relative importance of the set of allocated virtual
- 398 processors, and is expressed in abstract numeric units. A virtual system is entitled to consume host
- 399 processor resources at a rate that is directly proportional to the value of the Weight property.

6.4.3 Virtual processors

- 401 A virtual processor is the instantiation of allocated processor resources that is exposed to a virtual system
- 402 through a logical processor device; it is the result of the processor resource allocation based on a
- 403 processor resource allocation request. A virtual processor may be realized using techniques such as time
- sharing, but may also be a host processor that is directly passed through to the virtual system.
- 405 A virtual processor is represented by a CIM Processor instance that is part of the virtual system
- 406 representation.

400

407 **6.4.4 Dedicated processors**

- 408 A dedicated host processor is a processor owned by the host system that is exclusively reserved for
- support of a virtual processor of a particular virtual system.

410 6.4.5 Consumption of host processing power

- 411 A processor resource allocation request references the processor resource pool to be used by specifying
- 412 the value of the PoolID property. Host processor resources are allocated from the identified processor
- 413 resource pool during processor resource allocation.

414 6.4.5.1 Statically controlled processor resource consumption

- 415 With statically controlled processor resource consumption, a particular processor resource allocation
- 416 request is granted only if the amount of host processing resource available in the addressed processor
- resource pool is at least as large as the amount requested. This approach is called admission control.
- 418 Each successfully allocated processor resource reduces the amount of processing resources available
- 419 from the pool, respectively. In the CIM representation of the processor resource pool, the amount of
- 420 processing power assigned to consumers from the pool is visible through the value of the Reserved
- 421 property. With admission control the processing capacity represented by a particular resource pool
- remains larger than the sum of all reservations out of that pool. Admission control checks are typically
- 423 performed for the following operations: creating a resource pool, powering on a virtual system, and
- 424 modifying the resource allocation settings for either a resource pool or a running virtual system.

425 6.4.5.2 Dynamically controlled processor resource consumption

- 426 With dynamically controlled processor resource consumption, the amount of host processing resources
- 427 allocated in support of a virtual processor is not a constant value but varies significantly over time,
- 428 depending on factors like the processing requirements of the software executed within the virtual system
- or the processing power consumption of other virtual machines.
- 430 Further, with dynamically controlled processor resource consumption, the amount of processing power
- 431 managed through a processor resource pool conceptually may be considered as unlimited, such that no
- 432 admission control is performed at the time virtual processors are initially allocated (usually at virtual
- 433 system activation time). Of course, this approach may result in an over commitment situation where the
- host system experiences processing power shortages at a later point in time, such that ultimately the host
- system is no longer able to support the sum of processing power requests of all hosted virtual systems.

436 7 Implementation

- 437 This clause provides normative requirements related to the arrangement of instances and properties of
- 438 instances for implementations of this profile.

7.1 Allocation units

- This subclause details requirements for the unit of measurement that applies to the specification of
- 441 processor resource allocations.

442 **7.1.1 General**

439

- 443 Processor resource allocations and processor resource allocation requests shall be expressed through
- 444 <u>DSP0004</u> programmatic units using one these base units: "hertz", "percent" or "count".

445 7.1.2 Use of the base unit "hertz"

- 446 If the base unit of "hertz" is used, the following provisions apply:
 - CIM_Processor class

447

448 449

451

452

453

454

455

457

460

461

462

465

468

469

470

471 472

473

474

475

476

477

480

- MaxClockSpeed property: is expressed in MHz as defined in the CIM Schema
- CurrentClockSpeed property: is expressed in MHz as defined in the CIM Schema
- CIM_ResourceAllocationSettingData class
 - AllocationUnits property: Value shall use a base unit of "hertz".
 - Reservation property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
 - Limit property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
- 456
 CIM ResourcePool class
 - AllocationUnits property: Value shall use a base unit of "hertz".
- 458 Capacity property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
 - Reserved property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.

7.1.3 Use of the base unit "percent"

- 463 If the base unit of "percent" is used, the following provisions apply:
- 464
 CIM Processor class
 - MaxClockSpeed: Value is expressed in MHz as defined in the CIM Schema
- 466 CurrentClockSpeed: Value is expressed in MHz as defined in the CIM Schema
- CIM ResourceAllocationSettingData class
 - AllocationUnits property: Value shall be "percent"
 - Reservation property: Value shall be expressed in percent, stating a minimum percentage
 of the processing power as requested from the resource pool identified by the RASD
 instance.
 - Limit property: Value shall be expressed in percent, stating a maximum percentage of the processing power to be provided by the resource pool identified by the RASD instance..
 - CIM_ResourcePool class
 - AllocationUnits property: Value shall be "percent"
 - Capacity property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
- 478 Reserved property: Value shall be expressed in percent, stating the reserved percentage of processing power presently allocated from the pool.

7.1.4 Use of the base unit "count"

- 481 If the base unit of "count" is used the following provisions apply:
- 482
 CIM Processor class
- 483 MaxClockSpeed: Value is expressed in MHz as defined in the CIM Schema

487

488 489

490

491 492

493 494

495

496

497

498 499

500

501

508

519

- 484 CurrentClockSpeed: Value is expressed in MHz as defined in the CIM Schema
- 485
 CIM_ResourceAllocationSettingData class
 - AllocationUnits property: Value shall use a base unit of "count", the counted items shall be processors. For example, a unit of a tenth of a processor can be expressed using the value "count*0.1".
 - Reservation property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
 - Limit property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
 - CIM ResourcePool class
 - AllocationUnits property: Value shall be use a base unit of "count" the counted items shall be processors. For example, a unit of a tenth of a processor can be expressed using the value "count" 0.1".
 - Capacity property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.
 - Reserved property: Value shall be expressed in the unit expressed by the value of the AllocationUnits property.

7.2 Host resources

- The implementation of the representation of host processor resources is optional.
- If the representation of host processors is implemented, the provisions in this subclause apply.
- Each host processor shall be represented by exactly one CIM_Processor instance that is associated with
- the CIM_System instance that represents the host system through an instance of the CIM_SystemDevice association.
- 300 association.
- 507 Implementations may implement DSP1022 for host processors.

7.3 Resource pools

- This subclause adapts the CIM_ResourcePool class for the representation of processor resource pools.
- 510 **7.3.1 ResourceType property**
- 511 The value of the ResourceType property shall be 3 (Processor).

512 7.3.2 ResourceSubType property

- 513 The implementation of the ResourceSubType property is optional.
- 514 If the ResourceSubType property is implemented, the provisions in this subclause apply.
- 515 The value of the ResourceSubType property shall designate a resource subtype. The format of the value
- shall be as follows: "<org-id>:<org-specific>". The <org-id> part shall identify the organization that defined
- 517 the resource subtype value; the <org-specific> part shall uniquely identify a resource subtype within the
- set of subtype defined by the respective organization.

7.3.3 Primordial property

- 520 The value of the Primordial property shall be set to TRUE for any CIM ResourcePool instance that
- 521 represents a primordial processor resource pool. For other CIM_ResourcePool instances that represent
- 522 processor resource pools, the value of the Primordial property shall be set to FALSE.

523	7.3.4	PoolID	property
-----	-------	--------	----------

- 524 The value of the PoolID property shall be set such that it enables unique identification of the
- 525 CIM_ResourcePool instance within the scoping host system.

526 7.3.5 Reserved property

- 527 The implementation of the Reserved property is optional.
- 528 If the Reserved property is implemented, its value shall reflect the amount of host processing resource
- that is actually reserved from the resource pool, in units as expressed by the value of the AllocationUnits
- 530 property (see 7.3.7).

531 **7.3.6 Capacity property**

- The implementation of the Capacity property is conditional.
- 533 Condition: The Capacity property shall be implemented if the representation of the aggregation of host
- resources is implemented (see 7.4).
- 535 If the Capacity property is implemented, its value shall reflect the maximum amount of processing power
- that can be allocated from the resource pool, in units as expressed by the value of the AllocationUnits
- property (see 7.3.7). If the CIM_ResourcePool instance represents a processor resource pool with
- 538 unlimited capacity, the value of the Capacity property shall be set to the largest value supported by the
- 539 uint64 datatype.
- 540 The special value NULL shall be used if the implementation does not have knowledge about the resource
- 541 capacity represented by the pool. This may reflect a permanent or a temporary situation.

542 7.3.7 AllocationUnits property

- 543 The value of the AllocationUnits property shall be expressed through <u>DSP0004</u> programmatic units using
- one these base units: "hertz", "percent" or "count".
- 545 NOTE The units defined by value of the AllocationUnits property applies to the values of the Reserved and the
- Limit property; it does not apply to the value of the VirtualQuantity property.

547 **7.3.8 Instance requirements**

- 548 Each processor resource pool shall be represented by a CIM ResourcePool instance; the provisions of
- 549 10.12 and 7.3 apply. The CIM ResourcePool instance shall be associated with the CIM System instance
- 550 representing the host system through an instance of the CIM HostedResourcePool association (see
- 551 DSP1041.

552

7.4 Aggregation of host resources

- 553 The implementation of the representation of the aggregation of host processor(s) into a processor
- resource pool is optional.
- 555 If the representation of the aggregation of host processors is implemented, it may be supported for all or
- for only for some processor resource pools. If the aggregation of host processors is supported for a
- particular resource pool, any instance of the CIM_Processor class representing a host processor that
- contributes processing resources into that resource pool shall be associated to the CIM_ResourcePool
- instance representing the resource pool through an instance of the subclass of CIM Component
- association; the provisions of 10.1 apply.

566

567 568

569

570 571

572

579

580

581

586

596

598

599

600

7.5 Processor resource pool hierarchies

- The implementation of the representation of processor resource pool hierarchies is optional. If implemented, any concrete processor resource pool shall be represented through a CIM_ResourcePool instance, where all of the following conditions shall be met:
 - The value of the Primordial property shall be FALSE.
 - The instance shall be associated through an instance of CIM_ElementAllocatedFromPool association to the CIM_ResourcePool instance that represents its parent processor resource pool.
 - The instance shall be associated through an instance of the CIM_ElementSettingData association to the RASD instance that represents the amount of processing power allocated from the parent resource pool.

7.6 Default processor resource pool

- 573 The implementation of designating a default processor resource pool is optional. If implemented, all of the following conditions apply:
- The default processor resource pool shall be represented by a CIM_ResourcePool instance; see 7.8.3.2
- That instance shall be associated to the CIM_AllocationCapabilities instance that represents the pools default allocation capabilities as specified in 7.8.4.3.
 - The same CIM_AllocationCapabilities instance shall also represent the systems default allocation capabilities as specified in 7.8.3.2.

7.7 Processor resource pool management

- The implementation of processor resource pool management is optional.
- 583 If implemented, the specifications of DSP1041, clause 7.4 "Resource Pool Management" apply; this
- 584 profile does not specify specializations or extensions of resource pool management beyond those defined
- 585 by DSP1041.

7.8 Processor resource allocation

- 587 This subclause details requirements for the representation of resource allocation information through
- 588 CIM_ResourceAllocationSettingData (RASD) instances.
- 589 **7.8.1 General**
- 590 NOTE DSP1041 specifies two alternatives for modeling resource allocation: simple resource allocation and virtual resource allocation.
- 592 Implementations of this profile shall implement the *virtual resource allocation* pattern as defined in DSP1041, 7.2.

594 7.8.2 Flavors of allocation data

- 595 Various flavors of allocation data are defined:
 - Processor resource allocation requests; see 6.4.1.
- Processor resource allocations; see 6.4.2.
 - Settings that define the capabilities or mutability of managed resources. <u>DSP1043</u> specifies a
 capabilities model that conveys information about the capabilities and the mutability of managed
 resources in terms of RASD instances.

Parameters in operations that define or modify any of the representations listed above.
 DSP1042 that specifies methods for the definition and modification of virtual resources. These methods use RASD instances for the parameterization of resource-allocation-specific properties.

Table 2 lists acronyms that are used in subclauses of 7.8 in order to designate RASD instances that represent various flavors of processor resource allocation data.

Table 2 – Acronyms for RASD adapted for the representation of various flavors of allocation data

Acronym	Flavor	
Q_RASD	RASD adapted for the representation of processor resource allocation requests	
R_RASD	RASD adapted for the representation of processor resource allocations	
C_RASD RASD adapted for the representation of settings that define capabilities of systems or processor resource pools, or that define the mutability of processor resource allocations of processor resource allocation requests		
D_RASD RASD adapted for the representation of new processor resource allocation requests in me parameter values		
M_RASD	RASD adapted for the representation of modified processor resource allocations or processor resource allocation request in method parameter values	

Subclauses of 7.8 detail implementation requirements for property values in RASD instances. In some cases requirements only apply to a subset of the flavors listed in Table 2; this is marked in the text through the use of respective acronyms.

7.8.3 CIM_ResourceAllocationSettingData class

- This subclause defines rules for the values of properties in instances of the
- 613 CIM_ResourceAllocationSettingData (RASD) class representing processor resource allocation
- 614 information representing the various flavors of processor resource allocation information defined in Table
- 615 2.

608 609

610

611

625

626

627

628

629

630

605

606

607

616 7.8.3.1 ResourceType property

- The value of the ResourceType property in RASD instances representing processor resource allocation information shall be set to 3 (Processor) for processor resource allocation data.
- 619 **7.8.3.2 PoolID property**
- The value of the PoolID property shall designate the processor resource pool. A NULL value shall indicate the use of the host system's default processor resource pool.

622 7.8.3.3 ConsumerVisibility property

- The value of the ConsumerVisibility property shall denote whether host processor is directly passed through to the virtual system or whether processor is virtualized. Values shall be assigned as follows:
 - A value of 2 (Passed-Through) shall denote that the virtual processor is based on a passed-through host processor.
 - A value of 3 (Virtualized) shall denote that processor is virtualized.
 - In the cases of { Q_RASD | D_RASD | M_RASD), a value of 0 (Unknown) shall indicate that the processor resource allocation request does not predefine which type of processor shall be allocated.
- 631 Other values shall not be used.

632	7.8.3.4	HostResource[]	array property
-----	---------	----------------	----------------

- The implementation of the HostResource[] array property is conditional.
- 634 Condition: The value 2 (Passed-Through) is supported for the value of the ConsumerVisibility property,
- or any of the values 3 (Dedicated), 4 (Soft Affinity) or 5 (Hard Affinity) is supported for the
- 636 MappingBehavior property.
- 637 If HostResource[] array property is implemented, the provisions in this subclause apply.
- 638 In the cases of { Q_RASD | C_RASD | D_RASD | M_RASD } the value of the HostResource[] array
- property shall refer to (the representation of) one or more host resources that are configured to contribute
- 640 processing power for the processor resource allocation.
- In the case of R_RASD the value of the HostResource[] array property shall refer to (the representation
- of) the host resource(s) that contribute processing power for the processor resource allocation.
- 643 Elements of the value of the HostResource[] array property shall refer to instances of CIM classes, using
- the WBEM URI format as specified by <u>DSP0207</u>.

645 7.8.3.5 AllocationUnits property

- The value of the AllocationUnits property shall be expressed in one of the following programmatic units:
- "hertz", "percent" or "count" or a multiple of the units expressed through a regular expression, as defined
- 648 in <u>DSP0004</u> programmatic units.
- NOTE The units defined by value of the AllocationUnits property applies to the values of the Reserved and the
- 650 Limit property; it does not apply to the value of the VirtualQuantity property.

651 7.8.3.6 VirtualQuantity property

- The value of the VirtualQuantity property shall denote the number of virtual processors available to a
- 653 virtual system.
- NOTE The value of the VirtualQuantity property is a count; it is not expressed in allocation units. The units used
- for VirtualQuantity may be expressed in VirtualQuantityUnits (see 7.8.3.11).

656 7.8.3.7 Reservation property

- The implementation of the Reservation property is optional.
- 658 If the Reservation property is implemented, the value of the Reservation property shall denote the
- 659 minimum amount of host processing resources reserved for the use of a virtual system, expressed in
- allocation units.

661 **7.8.3.8** Limit property

- The implementation of the Limit property is optional.
- 663 If the Limit property is implemented, the value of the Limit property shall denote the maximum amount (or
- 664 limit) of host processing power available to a virtual system, expressed in allocation units.

665 7.8.3.9 Weight property

- The implementation of the Weight property is optional.
- 667 If the Weight property is implemented, its value shall denote the relative priority of a processor resource
- allocation in relation to other processor resource allocations from the same resource pool.

669 7.8.3.10 MappingBehavior property

674

675

676 677

678 679

680

682

683

684

685

686 687

688

689

690 691

692

693

694

695

696

- The implementation of the MappingBehavior property is optional.
- If the MappingBehavior property is implemented, its value shall denote how host resources referenced by elements in the value of HostResource[] array property relate to the processor resource allocation.
- 673 In R RASD instances the following rules apply to the value of the MappingBehavior property:
 - A value of 2 (Dedicated) shall indicate that the represented processor resource allocation is
 provided by host processor resources as referenced by the value of the HostResource[] array
 property that are exclusively dedicated to the virtual system.
 - A value of 3 (Soft Affinity) or 4 (Hard Affinity) shall indicate that the represented processor resource allocation is provided using host processor resource as referenced by the value of the HostResource[] array property.
 - Other values shall not be used.
- In Q RASD instances the following rules apply to the value of the MappingBehavior property:
 - The special value NULL or a value of 0 (Unknown) shall indicate that the processor resource allocation request does not require specific host resources.
 - A value of 2 (Dedicated) shall indicate that the processor resource allocation request shall be provided by exclusively dedicated host processor resources as specified through the value of the HostResource[] array property.
 - A value of 3 (Soft Affinity) shall indicate that the processor resource allocation request shall
 preferably be provided by host processor resources as specified through the value of the
 HostResource[] array property, but that other resources may be used if the requested
 resources are not available.
 - A value of 4 (Hard Affinity) shall indicate that the processor resource allocation request shall
 preferably be provided by host processor resources as specified through the value of the
 HostResource[] array property and that other resources shall not be used if the requested
 resources are not available.
 - Other values shall not be used.

7.8.3.11 VirtualQuantityUnits property

- VirtualQuantityUnits is an optional property that may be used to denote the units of the virtual device being allocated from the resource pool. The value of VirtualQuantityUnits shall be "count".
- 699 7.8.3.12 ResourceSubType property
- The value of the ResourceSubType property shall designate a resource subtype. The format of the value shall be as follows: "<org-specific>". The <org-id> part shall identify the organization that defined the resource subtype value; the <org-specific> part shall uniquely identify a resource subtype within the
- set of subtype defined by the respective organization.

704 **7.8.4** Instance requirements

This subclause details processor resource allocation related instance requirements.

706 7.8.4.1 Representation of resource allocation requests

Each processor resource allocation request shall be represented by a Q_RASD instance; the provisions of 10.11 apply.

709 7.8.4.2 Representation of resource allocations

- 710 Each processor resource allocation shall be represented by a R_RASD instance; the provisions of 10.11
- 711 apply.
- 712 The R_RASD instance shall be associated to the Q_RASD instance representing the corresponding
- 713 resource allocation request (see 7.8.4.1) through an instance of the CIM_ElementSettingData
- association; the provisions of 10.10 apply.
- 715 The R RASD instance shall be associated to the CIM ResourcePool instance providing resources for the
- 716 allocation (see 7.3.8) through an instance of the CIM_ResourceAllocationFromPool association; the
- 717 provisions of 10.4 apply.
- 718 Implementations may represent a resource allocation request and the corresponding resource allocation
- 5719 by one RASD instance; in this case the association requirements of this subclause apply correspondingly.
- Note that association instances that refer to the RA SASD instance are only existent while the resource
- 721 is allocated.

722

738

741

742

743

744

7.8.4.3 Representation of resource allocation capabilities

- 723 The allocation capabilities of a system or a resource pool shall be represented by a
- 724 CIM_AllocationCapabilities instance that is associated to the CIM_System instance representing the
- 725 system or to the CIM_ResourcePool instance representing the resource pool through an instance of the
- 726 CIM ElementCapabilities association; see DSP1043.
- 727 The settings that define the allocation capabilities of a processor resource pool shall be represented by
- 728 C_RASD instances; the provisions of 10.11 apply.
- 729 The processor allocation capabilities of a host system shall be a superset of the processor allocation
- 730 capabilities of all processor resource pools that are hosted by the host system.

731 7.8.4.4 Representation of resource allocation mutability

- The mutability of a resource allocation or resource allocation request shall be represented by a
- 733 CIM_AllocationCapabilities instance that is associated to the RASD instance representing the resource
- 734 allocation or resource allocation request through an instance of the CIM_ElementCapabilities association;
- 735 see DSP1043.
- The settings that define the allocation capabilities of a processor resource pool shall be represented by
- 737 C_RASD instances; the provisions of 10.11 apply.

7.9 Virtual processor

- A virtual processor shall be represented by exactly one CIM_Processor instance; the provisions of 10.8 apply. That instance shall be associated to all of the following instances:
 - the CIM_ComputerSystem instance that represents the virtual system through an instance of the CIM_SystemDevice association; the provisions of 10.15 apply.
 - the RASD instance that represents processor resource allocation through an instance of the CIM_SettingsDefineState association; the provisions of 10.13 apply.
- the CIM_ResourcePool instance that represents the processor resource pool providing the resource allocation through an instance of the CIM_ElementAllocatedFromPool association; the provisions of 10.2 apply.
- 748 Implementations may implement DSP1022 for virtual processors.

749 **8 Methods**

This section details the requirements for supporting intrinsic operations and extrinsic methods for the CIM elements defined by this profile.

752 8.1 Profile conventions for operations

- For each profile class (including associations), the implementation requirements for operations, including for those in the following default list, are specified in class-specific subclauses of this clause.
- 755 The default list of operations for all classes is:
- 756 GetInstance()
- EnumerateInstances()
- EnumerateInstanceNames()
- 759 For classes that are referenced by an association, the default list also includes
- 760 Associators()
- 761 AssociatorNames()
- 762 References()
- 763 ReferenceNames()
- 764 The implementation requirements for intrinsic operations and extrinsic methods of classes listed in clause
- 10, but not addressed by a separate subclause of this clause are specified by the "Methods" clauses of
- respective base profiles, namely <u>DSP1041</u> and <u>DSP1043</u>. These profiles are specialized by this profile,
- and in these cases this profile does not add method specifications beyond those defined in its base
- 768 profiles.

769 8.2 CIM_Processor for host processors

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

772 8.3 CIM_Processor for virtual processor

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

775 8.4 CIM ReferencedProfile

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

778 8.5 CIM RegisteredProfile

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

781 8.6 CIM_SystemDevice for host processors

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

8.7 CIM_SystemDevice for virtual processors

All operations in the default list in 8.1 shall be implemented as defined in <u>DSP0200</u>. Note that related profiles may define additional requirements on operations for the profile class.

787 9 Use cases

- 788 Clause 9 of <u>DSP1042</u> describes use cases virtual system definition, modification and destruction.
- 789 Clause 9 of DSP1057 describes use cases for discovery of virtual systems, determination of the state and
- 790 properties of a virtual system and the defined virtual system. This clause is a pre-requisite to
- 791 understanding the following use cases.
- 792 Clause 9 of <u>DSP1059</u> covers a number of essential use cases and should be read.
- 793 The following use cases and object diagrams illustrate use of this profile. They are for informative
- purposes only and do not introduce behavioral requirements for implementations of the profile.
- Figure 2 is a general instance diagram showing the essential classes for processor resource allocation.

797

798

799

800

801

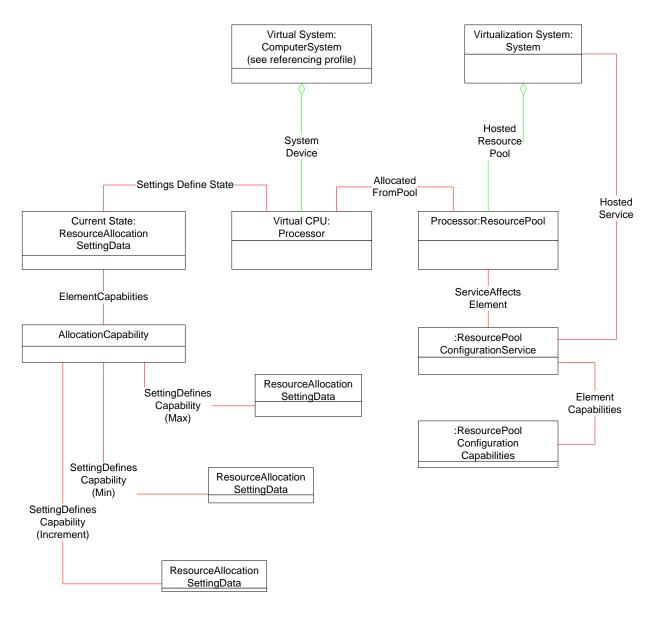


Figure 2 – Processor Resource Virtualization Profile: Instance diagram

There are different allocation units that may be used for the processor resource pool.

If instances of CIM_processor are instantiated to represent the physical processors aggregated into the primordial pool those instances should conform to DSP1022.

A defined state for allocation of processor resources is shown in Figure 3.

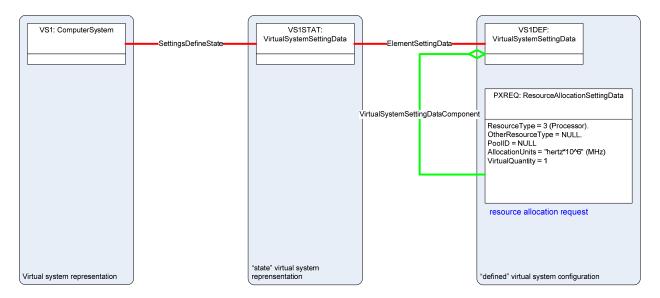


Figure 3 – Defined state

An active state for allocation of processor resources is shown in Figure 4.

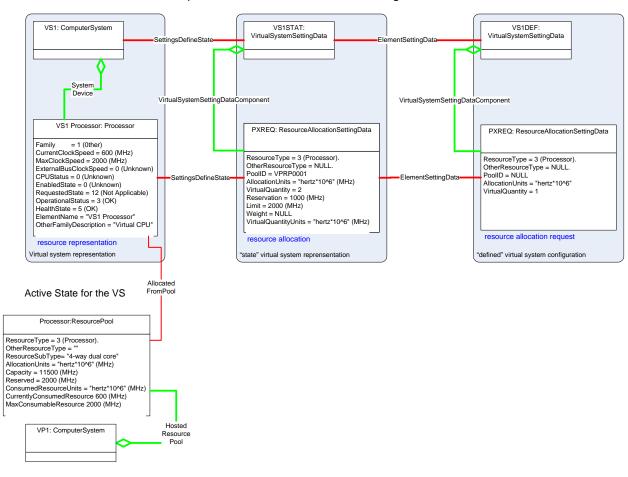


Figure 4 – Active state

806

805

802

803

807	9.1	Use case 1 – Increase the allocated processor capacity to a virtual machine
808		in MHz.

- 809 Pre-conditions:
- 810 The virtual system is active.
- The CIM_ComputerSystem instance representing the virtual system is known.
- The CIM_ResourcePool instance representing the processor resource pool is known.
- The CIM_AllocationUnits of the resource pool is "hertz*10^6".
- The defined CIM ResourceAllocationSettingData for the processor has property Reservation = 1000 (i.e
- 1GHz of processer capacity is allocated to the existing active virtual system) and has property Limit =
- 3000. The Reservation represents the minimum guaranteed resource available, even when system
- overcommitted. The sum of the Reservations must be less than the capacity of the resource pool. The
- 818 Limit represents the maximum resource consumption, even when under committed.
- 819 Main:
- 820 The client changes the defined CIM ResourceAllocationSettingData for the processor property to
- 821 Reservation = 2000.
- The client invokes the CIM_VirtualManagementService.ModifyResourceSettings() method.
- 823 Check the return code value for success execution.
- 824 Post-conditions:
- The minimum processor capacity required to be allocated for the support of the virtual processor is now 2
- 826 GHz, the maximum admissible processor capacity is now 3 GHz.

9.2 Use case 2 – Increase the allocated processor capacity to a virtual machine in percent.

- 829 Pre-conditions:
- 830 The virtual system is active.
- The CIM_ComputerSystem instance representing the virtual system is known.
- The CIM_ResourcePool instance representing the processor resource pool is known.
- 833 The CIM ResourceAllocationSettingData.AllocationUnits of the resource pool is "%".
- The defined CIM_ResourceAllocationSettingData for the processor has property Reservation = 10 (i.e ten
- 835 percent of processer capacity is allocated to the existing active virtual system) and has property Limit =
- 836 15.
- 837 Main:
- 838 The client changes the defined CIM_ResourceAllocationSettingData for the processor property
- 839 Reservation = 15.
- The client invokes the CIM_virtualSystemManagementService.ModifyResourceSettings() method.
- 841 Check the return code value for success execution.
- 842 Post-conditions:

852

853

854

855 856

The processor resource allocated to the virtual system is now 15 percent minimum and the maximum processor resource that the virtual system can consume is 15 percent.

9.3 Use case 3 - Add a virtual processor to a virtual system

- 846 The virtual system is in-active.
- The CIM_ComputerSystem instance representing the virtual system is known.
- The CIM_ResourcePool instance representing the processor resource pool is known.
- 849 TheCIM_ResourceAllocationSettingData.AllocationUnits of the resource pool is "hertz*10^6".
- Figure 5 illustrates the instance diagram before the
- 851 CIM_VirtualSystemManagementService.ModifyResourceSettings() method is called.

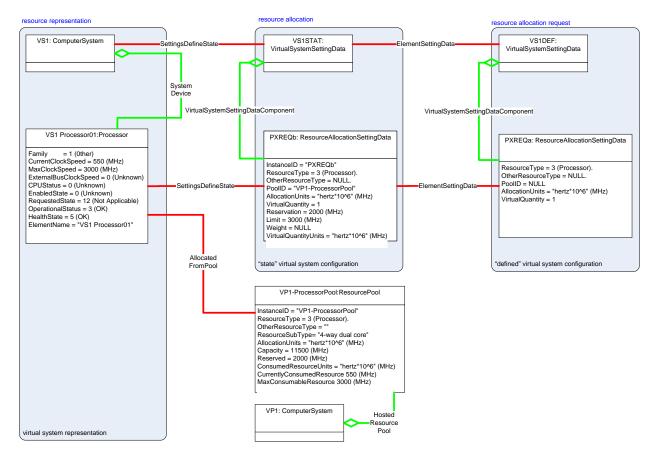


Figure 5 - CIM_ModifyResourceSettings - Before

Figure 6 illustrates the resource allocation setting data transferred with the CIM_VirtualSystemManagementService.ModifyResourceSettings() method call to increase the number of virtual processors.

Version 1.0.0 DMTF Standard 29

PXREQb: ResourceAllocationSettingData

InstanceID = PXREQb
ResourceType = NULL
OtherResourceType = NULL
PooIID = NULL
AllocationUnits = NULL
VirtualQuantity = 2
Reservation = NULL

Limit = NULL Weight = NULL

VirtualQuantityUnits = NULL

857

858

Figure 6 - RASD to Modify Resources

859 Main: 860 Check the maximum value of the CIM_ResourceAllocationSettingData.VirtualQuantity to verify that a virtual processor addition is allowed. 861 862 Check the increment value of the CIM_ResourceAllocationSettingData.VirtualQuantity to verify that a one 863 processor addition is allowed. The client changes the CIM_ResourceAllocationSettingData.VirtualQuantity by one. 864 865 The client invokes the CIM_VirtualSystemManagement.Service.ModifyResourceSettings() method. 866 Check the return code value for success execution. 867 Post-conditions: 868 The virtual quantity of processors allocated to the virtual system is now one greater. 869 Figure 7 illustrates the instance diagram after the 870 CIM_VirtualSystemManagementService.ModifyResourceSettings() method is called.

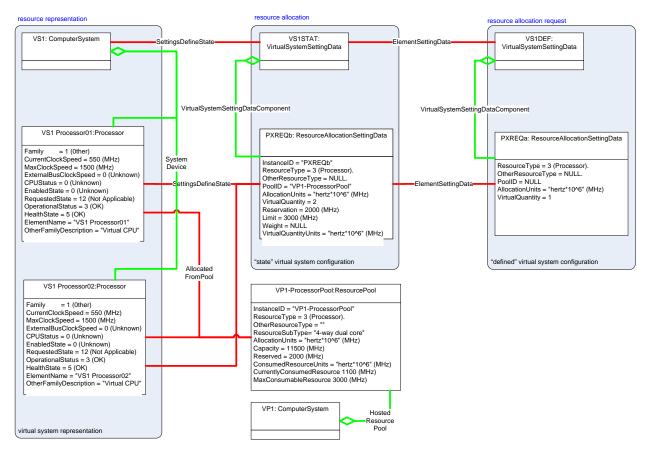


Figure 7 - CIM ModifyResourceSettings - After

9.4 Use case 4 – Allocation of processor resource by weight

874 Pre-conditions:

871

872

873

- 875 The virtual system is in-active.
- The CIM_ComputerSystem instance representing the virtual system is known.
- The CIM_ResourcePool instance representing the processor resource pool is known.
- The CIM AllocationUnits of the resource pool is "hertz*10^6".
- The defined CIM_ResourceAllocationSettingData for the processor has property Reservation = 0 (i.e no
- 880 minimum level of processer capacity is allocated to the existing active virtual system) and has property
- 881 Limit = none.
- 882 Main:
- The client changes the defined CIM_ResourceAllocationSettingData for the processor property Weight = 200.
- The client invokes the CIM_VirtualSystemManagementService.ModifyResourceSettings() method.
- 886 Check the return code value for success execution.
- 887 The client activates the virtual system.

Post-conditions:

888

889

890

891

892

894

895

896

897

898

900

901

902

903

904

The processor resource allocated to the virtual system is now 200/ SUM (Weight for each active virtual system). For example, if there are three other virtual systems with their Weight properties set to 200, 300,

100, then this virtual system is allocated 200/(200+300+100+200) or 25% of the processer capacity.

9.5 Use case 5 – Allocation of an additional processor resource

893 Pre-conditions:

The virtual system is active.

The CIM_ComputerSystem instance representing the virtual system is known.

The CIM_ResourcePool instances representing the processor resource pools is known.

The CIM_AllocationUnits of the resource pools is "hertz 10^6".

Figure 7 illustrates the instance diagram before the

899 CIM_VirtualSystemManagementService.AddResourceSettings() method is called.

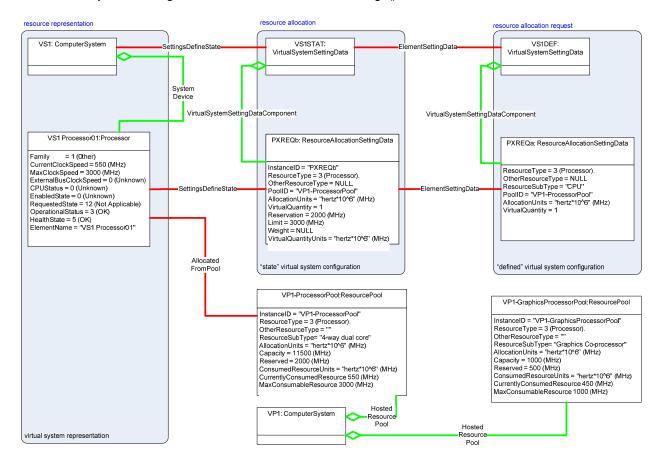


Figure 8 - CIM_AddResourceSettings - Before

Figure 9 illustrates the resource allocation setting data transferred with the CIM_VirtualSystemManagementService.AddResourceSettings() method call to add an additional virtual processor to the virtual system.

Version 1.0.0 DMTF Standard 32

GXREQa: ResourceAllocationSettingData

ResourceType = 3 (Processor). OtherResourceType = NULL. ResourceSubType = "GPU" PoolID = "VP1-GraphicsProcessorPool" AllocationUnits = "hertz*10^6" (MHz) VirtualQuantity = 1

905

Figure 9 - RASD to add processor

906 907 Main: 908 The client creates a defined CIM_ResourceAllocationSettingData specifying the PoolID for the resource 909 pool from which the additional processor is to be allocated. 910 The client invokes the CIM_VirtualSystemManagementService.AddResourceSettings() method. 911 Check the return code value for success execution. 912 Post-conditions: 913 The processor resources allocated to the virtual system is now two processors, one from the "VP1-914 ProcesssorPool" and one from the "VP1-GraphicsProcesssorPool". Figure 10 illustrates the instance 915 diagram after the CIM_VirtualSystemManagementService.AddResourceSettings() method is called.

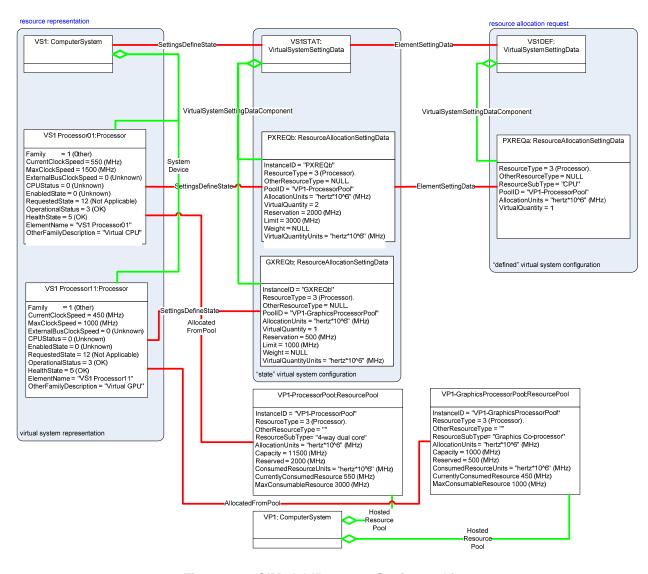


Figure 10 - CIM_AddResourceSettings - After

10 CIM elements

916

917

918

919

920 921

922

923

Table 3 lists CIM elements that are adapted by this profile. Each CIM element shall be implemented as described in Table 3. The CIM Schema descriptions for any referenced element and its sub-elements apply.

Clauses 7 ("Implementation") and 8 ("Methods") may impose additional requirements on these elements.

Table 3 – CIM Elements: Processor Resource Virtualization Profile

Element Name	Requirement	Description
CIM_AffectedJobElement	Optional	See <u>DSP1041</u> .
CIM_AllocationCapabilities for capabilities	Mandatory	See <u>DSP1043</u> .
CIM_AllocationCapabilities for mutability	Optional	See <u>DSP1043</u> .
CIM_Component for resource pool	Conditional	See 10.1.
CIM_ConcreteJob	Optional	See <u>DSP1041</u> .
CIM_ElementAllocatedFromPool for allocated virtual processors	Mandatory	See 10.2 .
CIM_ElementAllocatedFromPool for resource pool hierarchies	Conditional	See 10.3 .
CIM_ElementCapabilities for capabilities	Mandatory	See <u>DSP1043</u> .
CIM_ElementCapabilities for mutability	Conditional	See <u>DSP1043</u> .
CIM_ElementCapabilities for resource pools	Mandatory	See <u>DSP1041</u> .
CIM_ElementSettingData for processor resource allocation	Mandatory	See 10.4 .
CIM_ElementSettingData for processor resource pools	Conditional	See 10.5 .
CIM_HostedDependency	Optional	See 10.6 .
CIM_HostedResourcePool	Mandatory	See <u>DSP1041</u> .
CIM_HostedService	Mandatory	See <u>DSP1041</u> .
CIM_Processor for host processors	Conditional	See 10.7 .
CIM_Processor for virtual processors	Mandatory	See 10.8 .
CIM_ReferencedProfile	Mandatory	See <u>DSP1057</u> .
CIM_RegisteredProfile	Mandatory	See 10.9 .
CIM_ResourceAllocationFromPool	Optional	See 10.10 .
CIM_ResourceAllocationSettingData	Mandatory	See 10.11 .
CIM_ResourcePool	Mandatory	See 10.12 .
CIM_ResourcePoolConfigurationCapabilities	Mandatory	See <u>DSP1041</u> .
CIM_ResourcePoolConfigurationService	Mandatory	See <u>DSP1041</u> .
CIM_SettingsDefineState	Mandatory	See 10.13 .
CIM_ServiceAffectsElement	Mandatory	See <u>DSP1041</u> .
CIM_SystemDevice for host processors	Conditional	See 10.14 .
CIM_SystemDevice for virtual processors	Mandatory	See 10.15 .
Indications		
None defined		

10.1 CIM_Component for resource pool

924

925 926 The implementation of the CIM_Component association for the representation of the aggregation of host resources into resource pools is conditional.

935

936

937

938

939

- 927 Condition: The representation of resource aggregation (see 7.4) is implemented.
- The CIM_Component association is abstract; therefore it cannot be directly implemented. For this reason
- 929 the provisions in this subclause shall be applied to implementations of subclasses of the CIM_Component
- association. However, note that clients may directly resolve abstract associations without knowledge of the concrete subclass that is implemented.
- Table 4 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1041</u>.

Table 4 – Association: CIM_Component for resource pool

Elements	Requirement	Notes
GroupComponent	Mandatory	Key: Value shall reference the CIM_ResourcePool instance that represents the resource pool.
		Cardinality: 01
PartComponent	Mandatory	Key: Value shall reference the CIM_ManagedElement instance that represents a component of the resource pool.
		Cardinality: *

10.2 CIM_ElementAllocatedFromPool for allocated virtual processors

Table 5 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

Table 5 – Association: CIM ElementAllocatedFromPool

Elements	Requirement	Notes
Antecedent	Mandatory	Key: Value shall reference the instance of the CIM_ResourcePool class that represents a processor resource pool.
		Cardinality: 1
Dependent	Mandatory	Key: Value shall reference the instance of the CIM_Processor class that represents virtual processor resulting from a processor allocation from the pool.
		Cardinality: *

10.3 CIM_ElementAllocatedFromPool for resource pool hierarchies

- The implementation of the CIM_ElementAllocatedFromPool association for the representation of resource pool hierarchies is conditional.
- 942 Condition: Resource pool management (see 7.7) is implemented.
- Table 6 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

947

948

949

950

953

956

Table 6 - Association: CIM_ElementSettingData

Elements	Requirement	Notes
Antecedent	Mandatory	Key: Value shall reference the CIM_ResourcePool instance that represents the parent resource pool. Cardinality: 1
Dependent	Mandatory	Key: Value shall reference the CIM_ResourcePool instance that represents the child resource pool. Cardinality: *

10.4 CIM_ElementSettingData for processor resource allocation

Table 7 lists the requirements for elements of this class. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

Table 7 – Association: CIM_ElementSettingData for processor resource allocation

Requirement	Notes
Mandatory	Key: Value shall reference the RASD instance represents the processor resource allocation.
	Cardinality: 1
Mandatory	Key: Value shall reference the RASD instance that represents the processor resource allocation request. Cardinality: 01
Mandatory	Value shall be 1 (Is Default).
	Mandatory

10.5 CIM_ElementSettingData for processor resource pool

The implementation of the CIM_ElementSettingData class for the representation of the relationship between a child resource pool and its processor resource allocation is conditional.

Condition: Processor resource pool hierarchies (see 7.5) are implemented.

Table 8 lists the requirements for elements of this class. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

Table 8 – Association: CIM_ElementSettingData (Processor Resource Pool)

Elements	Requirement	Notes
ManagedElement	Mandatory	Key: Value shall reference the CIM_ResourcePool instance that represents the concrete processor resource pool. Cardinality: 01
SettingData	Mandatory	Key: Value shall reference the RASD instance that represents the processor resource allocation. Cardinality: 01

10.6 CIM_HostedDependency

958 The support of the CIM_HostedDependency association is optional.

Table 9 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1041</u>.

961

957

962

967

968

Table 9 – Association: CIM_HostedDependency

Elements	Requirement	Notes
Antecedent	Mandatory	Key: Value shall reference the CIM_Processor instance that represents host processor.
		Cardinality: 01
Dependent	Mandatory	Key: Value shall reference the CIM_Processor instance that represents virtual processor.
		Cardinality: 01

10.7 CIM_Processor (host processor)

- The implementation of the CIM_Processor class for the representation of host processors is conditional.
- 964 Condition: The representation of host resources is implemented; see 7.2.
- Table 10 lists the requirements for elements of this class. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1022</u> if that is implemented.

Table 10 – Class: CIM_Processor (host processor)

Elements	Requirement	Notes
SystemCreationClassName	Mandatory	Key
CreationClassName	Mandatory	Key
SystemName	Mandatory	Key
Name	Mandatory	Key
EnabledState	Mandatory	See CIM schema description.
RequestedState	Mandatory	See CIM schema description.

10.8 CIM_Processor (virtual processor)

- 969 See 7.9 for detailed implementation requirements for this class adaptation.
- Table 11 lists the requirements for elements of this class adaptation. These requirements are in addition to those specified in the CIM Schema and in DSP1022 if that is implemented.

977

978

982

983

Table 11 – Class: CIM_Processor (virtual system)

Elements	Requirement	Notes
SystemCreationClassName	Mandatory	Key
CreationClassName	Mandatory	Key
SystemName	Mandatory	Key
Name	Mandatory	Key
EnabledState	Mandatory	Unspecified.
RequestedState	Mandatory	Unspecified.

10.9 CIM_RegisteredProfile

- The basic adaptation of the CIM_RegisteredProfile class is specified by <u>DSP1033</u>.
- Table 12 lists the requirements for elements of this class. These requirements are in addition to those specified in <u>DSP1033</u>.

Table 12 - Class: CIM_RegisteredProfile

Elements	Requirement	Notes
RegisteredOrganization	Mandatory	Value shall be set to 2 (DMTF).
RegisteredName	Mandatory	Value shall be set to "Processor Resource Virtualization".
RegisteredVersion	Mandatory	Value shall be set to the version of this profile: "1.0.0".

10.10 CIM_ResourceAllocationFromPool

- The support of the CIM_ResourceAllocationFromPool association is optional.
- Table 13 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1041</u>.

Table 13 – Association: CIM_ResourceAllocationFromPool

Elements	Requirement	Notes
Antecedent	Mandatory	Key: Value shall reference the instance of the CIM_ResourcePool class that represents a processor resource pool.
		Cardinality: 01
Dependent	Mandatory	Key: Value shall reference the instance of the CIM_ResourceAllocationSettingData class that represents a processor resource allocation from the pool.
		Cardinality: *

10.11 CIM_ResourceAllocationSettingData

See 7.8.3 for detailed implementation requirements for this class.

986

987

988

989

990

991

Table 14 lists the requirements for elements of this class. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

Table 14 - Class: CIM_ResourceAllocationSettingData

Elements	Requirement	Notes
InstanceID	Mandatory	Key ; see <u>DSP1041</u> .
ResourceType	Mandatory	Value shall be 3 (Processor).
OtherResourceType	Mandatory	Value shall be NULL.
ResourceSubType	Optional	See 7.8.3.12 .
PoolID	Mandatory	See 7.8.3.2.
ConsumerVisibility	Optional	See 7.8.3.3.
HostResource[]	Optional	See 7.8.3.4.
AllocationUnits	Mandatory	See 7.8.3.5 .
VirtualQuantity	Mandatory	See 7.8.3.6.
Reservation	Optional	See 7.8.3.7.
Limit	Optional	See 7.8.3.8.
Weight	Optional	See 7.8.3.9.
AutomaticAllocation	Optional	See <u>DSP1041</u> .
AutomaticDeallocation	Optional	See <u>DSP1041</u> .
MappingBehavior	Optional	See 7.8.3.10.
VirtualQuantityUnits	Optional	See 7.8.3.11

10.12 CIM_ResourcePool

Table 15 lists the requirements for elements of this class. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1041</u>.

Table 15 – Class: CIM_ResourcePool

Elements	Requirement	Notes
InstanceID	Mandatory	Key
ElementName	Optional	See <u>DSP1041</u> .
PoolID	Mandatory	See 7.3.3.
Primordial	Mandatory	See 7.3.4.
Capacity	Conditional	See 7.3.6.
Reserved	Optional	See 7.3.5.
ResourceType	Mandatory	Value shall be 3 (Processor).
OtherResourceType	Mandatory	Value shall be NULL.
ResourceSubType	Optional	See 7.3.2.
AllocationUnits	Mandatory	See 7.1

10.13 CIM_SettingsDefineState

Table 16 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in DSP1041.

995

996

1000

1001

1002

1003

1004

1005

1006

992

993

994

Table 16 - Association: CIM_SettingsDefineState

Elements	Requirement	Notes
ManagedElement	Mandatory	Key: Value shall reference an instance of the CIM_Processor class.
		Cardinality: 01
SettingData	Mandatory	Key: Value shall reference the instance of the CIM_ResourceAllocationSettingData class.
		Cardinality: 01

10.14 CIM_SystemDevice for host processor

The implementation of the CIM_SystemDevice association for the representation of the relationship between host processors and their system is conditional.

999 Condition: The representation of host resources is implemented; see 7.2.

NOTE If <u>DSP1022</u> is implemented for host processors, the implementation of the CIM_SystemDevice association for the representation of the relationship between host processors and their system is required.

If the CIM_SystemDevice association is implemented for the representation of the relationship between host processors and their systems, the provisions in this subclause apply.

Table 17 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema, in <u>DSP1041</u>, and in <u>DSP1022</u> if that is implemented.

Table 17 - Association: CIM_SystemDevice (Host Processor)

Elements	Requirement	Notes
GroupComponent	Mandatory	Key: Value shall reference an instance of the CIM_System class.
		Cardinality: 1
PartComponent	Mandatory	Key: Value shall reference the instance of the CIM_Processor class.
		Cardinality: *

10.15 CIM_SystemDevice for virtual processor

Table 18 lists the requirements for elements of this association. These requirements are in addition to those specified in the CIM Schema and in <u>DSP1041</u>.

Table 18 – Association: CIM_SystemDevice (Virtual Processor)

Elements	Requirement	Notes
GroupComponent	Mandatory	Key: Value shall reference an instance of the CIM_System class.
		Cardinality: 1
PartComponent	Mandatory	Key: Value shall reference the instance of the CIM_Processor class.
		Cardinality: *

1011

1007

1008 1009

1010

1012 ANNEX A 1013 (Informative) 1014

Change Log

Version	Date	Description
1.0.0a	2009-09-14	Release as work in progress
1.0.0c	2010-02-02	Release as work in progress
1.0.0	2010-04-22	Release as DMTF Standard

1016 1017

1015