

 1

Document Identifier: DSP2000 2

Date: 2015-04-27 3

Version: 2.0.0 4

CIM Diagnostic Model White Paper 5

 CIM Version 2.34 6

Supersedes: 1.0.0 7

Document Type: White Paper 8

Document Class: Informative 9

Document Status: Published 10

Document Language: en-US 11

 12

CIM Diagnostic Model White Paper DSP2000

2 Published Version 2.0.0

Copyright Notice 13

Copyright © 2004, 2015 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 14

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15
management and interoperability. Members and non-members may reproduce DMTF specifications and 16
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17
time, the particular version and release date should always be noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third party 19
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 26
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 32
such patent may relate to or impact implementations of DMTF standards, visit 33
http://www.dmtf.org/about/policies/disclosures.php. 34

http://www.dmtf.org/about/policies/disclosures.php

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 3

CONTENTS 35

Abstract ... 5 36

Introduction.. 6 37

1 Executive summary ... 7 38
1.1 Overview ... 7 39
1.2 Goals ... 7 40

1.2.1 Manageability through standardization .. 8 41
1.2.2 Interoperability ... 8 42
1.2.3 Diagnostic effectiveness .. 8 43
1.2.4 Global access .. 9 44
1.2.5 Enhances ITIL processes .. 9 45
1.2.6 Life cycle applicability .. 9 46
1.2.7 Enable health and fault management .. 9 47
1.2.8 Integration with other management functions .. 9 48
1.2.9 Integration with other management initiatives ... 9 49
1.2.10 Extendable to other system elements.. 10 50

1.3 Who should read this paper .. 10 51
1.4 CDM versions ... 10 52
1.5 Conventions used in this docume89nt .. 10 53

2 Terms and definitions .. 11 54

3 Symbols and abbreviated terms .. 11 55

4 Modeling diagnostics ... 12 56
4.1 Consumer-provider protocol ... 13 57
4.2 Implementation-neutral interface .. 13 58
4.3 Backward compatibility ... 13 59
4.4 Extendable to other Diagnostic Services for health and fault management 13 60
4.5 Diagnostics are applied to managed elements ... 14 61
4.6 Generic framework .. 14 62

4.6.1 Diagnostic control .. 14 63
4.6.2 Diagnostic logging and reporting assumptions .. 15 64
4.6.3 Localization .. 15 65

5 CDMV2.1 ... 15 66
5.1 Overview ... 15 67
5.2 Model components .. 16 68

5.2.1 Services ... 17 69
5.2.2 Capabilities .. 19 70
5.2.3 Settings .. 21 71
5.2.4 Jobs and Job Control ... 23 72
5.2.5 Output from diagnostics tests .. 26 73
5.2.6 Concrete diagnostics profiles ... 28 74
5.2.7 Relationship to “Managed Element” profiles .. 30 75

5.3 CDMV2.1 usage .. 31 76
5.3.1 Discovery and setup .. 31 77
5.3.2 Test execution .. 35 78
5.3.3 Determining the results of a test .. 38 79
5.3.4 General usage considerations ... 38 80
5.3.5 Development usage considerations ... 40 81
5.3.6 Correlation of logs and jobs ... 40 82

6 Future development .. 42 83
6.1 Functions for reporting on affected elements ... 43 84

CIM Diagnostic Model White Paper DSP2000

4 Published Version 2.0.0

6.1.1 Tests on higher level logical elements ... 43 85
6.1.2 Diagnostic functions on the failed element .. 43 86

6.2 Reporting of available corrective actions .. 43 87
6.3 Continued integration with initiatives .. 43 88
6.4 Integration of the RecordLog profile ... 44 89
6.5 Improvements to test reporting ... 44 90
6.6 Improved reporting of testing capabilities ... 44 91
6.7 Testing for logical elements .. 44 92
6.8 Enhanced reporting of affected job elements ... 45 93
6.9 Applying security to CDM functions .. 45 94

ANNEX A (informative) Change log ... 46 95

Bibliography .. 47 96

 97

Figures 98

Figure 1 – Overview of the diagnostics model .. 16 99

Figure 2 – CDM version 2.1 diagnostics model .. 17 100

Figure 3 – Diagnostics Extensions to Job Control .. 25 101

Figure 4 – Elements for diagnostic logs .. 26 102

Figure 5 – Example standard message exchange ... 28 103

Figure 6 – Disk Drive specialization of the Diagnostics Profile ... 29 104

Figure 7 – Diagnostics and Managed Element Profiles .. 31 105

Figure 8 – Jobs and logs ... 41 106

 107

 108

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 5

Abstract 109

Diagnostics is a critical component of systems management. Diagnostic services are used in problem 110
containment to maintain availability, achieve fault isolation for system recovery, establish system integrity 111
during boot, increase system reliability, and perform routine preventive maintenance. The goal of the 112
Common Diagnostic Model (CDM) is to define industry-standard building blocks based on, and consistent 113
with, the DMTF Common Information Model (CIM) that enable seamless integration of vendor-supplied 114
diagnostic services into system and SAN management frameworks. 115

In this paper, the motivation behind the CDM is presented. In addition, the core architecture of the CDM is 116
presented in the form of a diagnostic schema. Proper usage of the schema extensions is presented in a 117
tutorial manner. Future direction for the CDM is discussed to further illustrate the motivations driving CDM 118
development, including interoperability, self-management, and self-healing of computer resources. 119

 120

CIM Diagnostic Model White Paper DSP2000

6 Published Version 2.0.0

Introduction 121

The Common Diagnostic Model (CDM) is both an architecture and methodology for exposing system 122
diagnostic instrumentation through standard CIM interfaces. The schema has been extended to improve 123
versatility and extendibility. A number of major changes occurred since the previous version of this white 124
paper. 125

The purpose of this paper is to describe the CDM schema as it appears in CIM 2.34 and describe future 126
development. This paper provides guidance, where appropriate, to client and provider implementers to 127
reinforce the standardization goal. Guidance for diagnostic test developers is not within the scope of this 128
whitepaper and is being documented by the CDM Forum. 129
 130

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 7

CIM Diagnostic Model White Paper CIM Version 2.34 131

1 Executive summary 132

This paper explains how CDM standardizes diagnostics into a generic management framework that 133
enhances health and fault management. Adopters can implement any of a number of available concrete 134
profiles that can be extended as needed by the vendor. For components that do not have an existing 135
concrete profile, adopters can simply base their implementation on the documented diagnostic design 136
pattern. 137

The current versions of the model are first presented and described in detailed followed by areas of future 138
development. 139

1.1 Overview 140

The term diagnostics has been used to describe a variety of problem-determination and prevention 141
tools, including exercisers, excitation/response tests, information gatherers, configuration tools, and 142
predictive failure techniques. This paper adopts a general interpretation of this term and addresses all 143
forms of diagnostic tools that would be used in OS-present and preboot environments. This paper 144
addresses general enabling infrastructure and specific diagnostics are deferred to specific diagnostic 145
profiles. 146

The OS-present environment presents a formidable set of challenges to diagnostics programmers. They 147
must deal with system status and information hidden behind proprietary APIs and undocumented 148
incantations. Although CIM remedies this situation, diagnostics programmers are also faced with OS 149
barriers between user space and the target of their efforts, making it difficult, often impossible, to 150
manipulate the hardware directly. The CDM eases this situation through a standardized approach to 151
diagnostics that uses the more sophisticated aspects of CIM—the ability to manipulate manageable 152
system components by invoking methods. 153

1.2 Goals 154

The goals of the CDM are: 155

 Manageability through standardization 156

 Interoperability 157

 Diagnostic effectiveness 158

 Global access 159

 Life cycle applicability 160

 Enable health and fault management 161

 Integration with other management functions 162

 Integration with other management initiatives 163

 Extendable to other system elements 164

CIM Diagnostic Model White Paper DSP2000

8 Published Version 2.0.0

1.2.1 Manageability through standardization 165

Faced with the requirement to deliver diagnostic tools to their customers, chip and adapter developers 166
have to deal with a variety of proprietary APIs, report formats, and deployment scenarios. The CDM 167
specifies a common methodology, with CIM at its core, which results in a “one size fits all” diagnostic 168
package. Diagnostic management applications can obtain information about which diagnostic services 169
are available, configure and invoke diagnostics, monitor diagnostic progress, control diagnostic execution, 170
and query CIM for information that the diagnostic service gathers. 171

If the CDM methodology is followed, these standard diagnostic packages can be incorporated seamlessly 172
into applications that are implemented as CIM clients. The diagnostic programmer, relieved from the effort 173
associated with satisfying multiple interfaces, can spend more time improving the effectiveness of the 174
tools. 175

Standardization also has allowed the creation of a number of both client and server libraries for 176
supporting the interface. For example, JSR48 provides a Java library for interfacing between clients and 177
servers (see JSR48). In addition, there are common tools available for debugging code developed to the 178
standard. 179

The CMPI (Common Manageability Programming Interface) defines a common C-based provider 180
interface (see CMPI). With this definition, a provider can be re-used in any management server 181
environment supporting this interface. 182

1.2.2 Interoperability 183

Diagnostic CIM models extend the CIM models to address diagnostic capabilities. The CIM interface 184
between CIM clients (CIM client libraries and applications) and WBEM servers (object managers and 185
providers) is standardized and is platform-neutral. The implementations of CIM clients and providers do 186
not have to be platform-neutral. A single provider implementation can support multiple clients and a single 187
client can talk to multiple providers using a single standard interface. To the extent that CIM 188
implementations promote interoperability, so does the CDM. These CDM implementations allow clients to 189
manage diagnostic assets across heterogeneous platforms and environments. 190

1.2.3 Diagnostic effectiveness 191

Behind the CDM infrastructure are the diagnostic tools themselves. When developed to the CDM, the 192
tools become less difficult to deploy and the effectiveness of the entire package can be improved. Several 193
factors are at play. Ease of deployment through standardization and interoperability increases availability, 194
thus expanding coverage. Tool developers also have the entire CIM model implementation for other 195
aspects of device management to draw on in their problem-determination and resolution efforts. By 196
integrating diagnostics with other aspects of device management (e.g., configuration management or 197
performance monitoring), the CDM also goes beyond base diagnostic features by recommending 198
techniques to vendors that lead to integration of diagnostics into device drivers, thus gaining access to 199
more details of the device being diagnosed. The effectiveness of the diagnostics is improved by 200
integrating with all of the available system information. 201

Being able to bind diagnostics to the same elements that you are targeting for other management 202
operations is not only extremely powerful but invaluable. CDM makes this possible by standardizing 203
diagnostics on a well known and established management framework. 204

Diagnostics are fine tuned, not just to the component, but also to its environment enabling a more 205
comprehensive view and control of component status and health. Diagnostics are consequently executed 206
in a truly holistic manner such that critical business services and workflows are not adversely impacted. 207
Workloads receive the resources they need and when they need them with an understanding of what 208

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 9

elements will be affected. Having intelligent control of individual element states makes it possible to 209
achieve an overall desired state for the environment. 210

CDM unifies diagnostics into one consolidated system that permits managing different resource types 211
such as Network, Storage, and Compute. Resource types are normalized across vendors so that 212
diagnostic information can be consumed in a consistent manner. This helps free CDM adopters from 213
many of the infrastructure issues and allows them to focus almost exclusively on diagnostic content. 214

1.2.4 Global access 215

The CIM framework is designed for managing system elements across distributed environments and can 216
support these elements without regard to locale. This feature greatly expands the scope in which it can be 217
deployed and utilized without special adaptations or additional costs. This facilitates cost-effective 218
serviceability scenarios and warranty-expense reduction. 219

1.2.5 Enhances ITIL processes 220

CDM provides a standard way for ITIL processes to support problem verification and isolation. 221

1.2.6 Life cycle applicability 222

The CDM is designed to be applicable through and in all stages of a product’s life cycle. For example, the 223
same set of tests that was used during design and development can also be executed to verify a 224
component on the manufacturing floor before it is shipped and later in a customer’s production 225
environment. The earlier in the life cycle that errors are detected the cheaper they are to fix. And the more 226
errors that are caught before a component gets into a customer’s hands, the more satisfied the customer. 227

1.2.7 Enable health and fault management 228

Diagnostics is an integral part of health and fault management of a system or device. When diagnostics 229
are combined with basic management functions of monitoring and configuration of systems and devices 230
the result is a robust environment for health and fault management. The combination of management 231
profiles for systems and devices and CDM interfaces for diagnostics enables verifying the health of 232
systems, determining what elements are impacted by a failing element, doing failure prediction and 233
repairing or reconfiguring failed devices. 234

1.2.8 Integration with other management functions 235

Integrating diagnostics interfaces with other management functions allows clients to access other 236
elements impacted by the failing elements. For example, a failing hard disk drive (HDD) impacts higher 237
level management elements (e.g., Storage Volumes) that store data on the HDD. CDM puts diagnostics 238
information in the context of other management functions modeled in CIM. 239

The CDM design includes linkage to “affected elements” of the tested components. Repair actions may 240
require actions on the affected elements, as well as the tested component. By being integrated into the 241
CIM management model, functions required to reconfigure or repair the affected elements are discovered 242
and readily available. 243

1.2.9 Integration with other management initiatives 244

Initial work on CDM has focused on diagnostics for physical elements of a system. However the CDM 245
concepts can be applied to any element of a system. This allows CDM to be integrated with other CIM 246
based management profiles (like networks and external devices) and initiatives (like cloud computing, 247
server management, or storage networking). 248

CIM Diagnostic Model White Paper DSP2000

10 Published Version 2.0.0

For example, the Storage Networking Industry Association (SNIA) is using CDM and its diagnostics 249
capability to enhance its management functions for health and fault management. By integrating the basic 250
diagnostics of the CDM model with its existing storage management profiles, SNIA will be providing a 251
robust system for the health and fault management of storage environments and specifically storage 252
devices. 253

1.2.10 Extendable to other system elements 254

CDM defines an abstract profile containing general constructs for implementing diagnostic tests, 255
controlling test execution, and monitoring results. This abstract profile can be applied to any managed 256
element in a system. 257

CDM also has a set of “concrete” profiles for managing specific elements in a system (e.g., CPU, HDDs, 258
Host Bus Adapters). These concrete profiles identify specific tests and results for the specific devices that 259
are supported. However, it is important to note that similar concrete profiles can be created for any other 260
managed elements in a system. Those elements do not have to be “physical” elements. They can be 261
logical elements such as filesystems or logical volumes. Regardless of whether they are physical or 262
logical, elements diagnostics for the target element are made available in exactly the same way. 263

1.3 Who should read this paper 264

This paper was prepared to help developers (of diagnostics and system management in general) 265
understand the CIM components of the Common Diagnostic Model and other areas of the model that 266
fulfill the requirements of a comprehensive health and fault management methodology for modern 267
computer systems. This paper may also be used by system professionals that want to understand how 268
diagnostics fit in the overall management of systems. Anyone planning to use or create diagnostic 269
services should read it. 270

This paper assumes some basic knowledge of the CIM Schema, represented by the MOF files. Detailed 271
information in these files will not be covered in this paper. 272

This paper deals primarily with the CDM architecture. The CDM also includes implementation standards 273
to promote OEM/vendor interoperability and code reuse. The reader can refer to specific CDM profiles for 274
implementation details (see the Bibliography for the list of current profiles). This document also addresses 275
issues related to compliance. Tools are being developed to validate CDM compliance to assist in 276
validation of tools and tests that claim support of CDM. 277

1.4 CDM versions 278

CDM version 1.0 (CDMV1) was introduced in CIM 2.3. It has been enhanced in subsequent versions of 279
the CIM Schema. Some of the model components peculiar to CDMV1 have been deprecated prior to the 280
introduction of CDM version 2.0, at which time support for CDMV1 clients and providers has been 281
discontinued. 282

CDM version 2.0 (CDMV2) was introduced with CIM Schema 2.9 and has evolved to CDM version 2.1 283
(CDMV2.1) and CIM Schema 2.34. The settings/test/results concept is still present, but it is modeled 284
using services, jobs, and logs. In addition, CDM version 2.1 has introduced support for interactive tests 285
and alert indications as a means of reporting test events as standard messages to clients. 286

1.5 Conventions used in this document 287

Classes and properties are written using capitalized words without spaces, as in ManagedElement 288
(contrast with “managed element,” which is the generic form). 289

The Bold attribute is added for visual impact with no other implied meaning. 290

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 11

Methods include parentheses () for quick identification, as in RunDiagnosticService(). 291

Arrays include brackets [] for identification, as in LoopControl[]. 292

A colon between class names is interpreted as “derived from,” as in ConcreteJob : Job. 293

A “dot” between a class name and a property name is interpreted as “containing the property,” as in 294
Capabilities.InstanceID. (InstanceID is a property of the Capabilities class.) 295

The prefix “CIM_” is often omitted from class names for brevity and readability. 296

2 Terms and definitions 297

The following terms are used in this document: 298

 2.1299

Diagnostic Job 300

Thread for executing a diagnostic service (such as a Diagnostic test) 301

 2.2302

Interactive Test 303

Test that solicits input from a client application to be completed 304

3 Symbols and abbreviated terms 305

The following abbreviations are used in this document: 306

 3.1307

CDM 308

Common Diagnostic Model 309

 3.2310

CDMV1 311

Version 1 of the CDM (based on CIM 2.3) 312

 3.3313

CDMV2 314

Version 2.0 of the CDM (based on CIM 2.9) 315

 3.4316

CIM 317

Common Information Model 318

 3.5319

CR 320

(CIM) Change Request 321

 3.6322

DBCS 323

Double Byte Character Set 324

CIM Diagnostic Model White Paper DSP2000

12 Published Version 2.0.0

 3.7325

FRU 326

Field Replaceable Unit 327

 3.8328

ME 329

ManagedElement 330

 3.9331

MOF 332

Managed Object Format 333

 3.10334

MSE 335

ManagedSystemElement (the class or its children) 336

 3.11337

NLS 338

National Language Support 339

 3.12340

RAS 341

Reliability, Availability, and Serviceability 342

 3.13343

SAN 344

Storage Area Network 345

 3.14346

UML 347

Unified Modeling Language 348

 3.15349

WBEM 350

Web Based Enterprise Management 351

 3.16352

XML 353

Extensible Markup Language 354

4 Modeling diagnostics 355

The Common Diagnostic Model (CDM) extends the CIM Schema to cover the management of 356
diagnostics, including diagnostic tests, executives, monitoring agents, and analysis tools. The objective of 357
diagnostic integration into CIM is to provide a framework in which industry-standard building blocks that 358
contribute to the ability to diagnose and predict the system’s health can seamlessly integrate into 359
enterprise management applications and policies. This clause discusses the modeling concepts that are 360
relevant to implementing diagnostics with CIM. 361

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 13

4.1 Consumer-provider protocol 362

A CIM diagnostic solution has two components: diagnostic consumers (or diagnostic CIM clients) and 363
diagnostic providers. Diagnostic providers register the classes, properties, methods, and indications that 364
they support with the CIM object manager (CIMOM). When a management client queries CIM for 365
diagnostics supported on a given managed element, CIM returns the instances of the diagnostic services 366
associated with that managed element. This action establishes communication between the discovered 367
diagnostic providers and the management client. The management client can now query CIM for 368
properties, enable indications, or execute methods according to the standard and the diagnostic protocol 369
conventions described in this document. The conventions that diagnostic consumers and providers must 370
follow the rules and behavior defined in the profiles defined by CDM. 371

4.2 Implementation-neutral interface 372

The diagnostic interface is implementation neutral. Implementations present their functions and data 373
through a standard interface that is independent of how the functions are implemented or how the data is 374
actually represented in the system or device. 375

Implementations of the interface may be: 376

 Re-entrant or not 377

 Single threaded or multithreaded 378

 Dynamically loaded or “always resident” 379

 Implemented with any number of providers 380

 Resident on the system or remote 381

 The execution environment the provider uses 382

 The language the provider is written in 383

4.3 Backward compatibility 384

CDM version 2.1 is backward compatible with CDM version 2.0. That is, elements of the model (and 385
interface) that were supported in version 2.0 are supported in version 2.1. Version 2.1 adds elements and 386
functions that were not present in version 2.0. However, a client that was written to version 2.0 should 387
work with a version 2.1 implementation of CDM. The client would not do anything with the new elements 388
or functions introduced in version 2.1 and all the elements and functions of 2.0 would be present and 389
should work as they did in version 2.0. 390

In addition, to the extent that implementations of CDM version 2.0 conform to the abstract Diagnostics 391
Profile (DSP1002 version 2.0), implementations of concrete profiles (e.g., the FC HBA Diagnostics profile) 392
should be backward compatible with the elements in DSP1002 version 2.0. This is because the concrete 393
profiles are based on CDM version 2.0 or CDM version 2.1. While certain tests may not be present, many 394
tests (e.g., Ping and Echo), if implemented to 2.0 should be compatible with implementations of 2.1 of the 395
concrete profile. This is because the base function (RunDiagnosticService) has not changed. 396

4.4 Extendable to other Diagnostic Services for health and fault management 397

Diagnostics are more than just test applications. The goal is to make CDM extendable to other 398
diagnostics related capabilities. Overall diagnostics create controlled stimuli and monitor, gather, record, 399
and analyze information about detected faults, state, status, performance, and configuration. Because of 400
its diverse uses, diagnostics are best modeled as a service that launches or enables the components 401
necessary to implement the diagnostic actions requested by the client. 402

CIM Diagnostic Model White Paper DSP2000

14 Published Version 2.0.0

These diagnostic components may be implemented as test applications, monitoring daemons, enablers 403
for built-in diagnostic capabilities, or proxies to some other instrumentation that is implemented outside of 404
CIM. 405

4.5 Diagnostics are applied to managed elements 406

Diagnostics are applied to managed elements. “Applied” means that a test checks a managed element, a 407
diagnostic daemon monitors a managed element, diagnostic instrumentation is built into the managed 408
element, and so on. One of the goals of CIM-based diagnostics is the packaging of diagnostics with the 409
vendor’s deliverable or Field Replaceable Unit (FRU). Thus diagnostics are often applied at the FRU level 410
of granularity. 411

Diagnostic services are commonly applied to: 412

 Logical Devices: Most vendor-supplied diagnostics are for add-on peripherals such as 413
adapters and storage media. In this case clear correspondence exists between the diagnostic’s 414
scope and a CIM-defined logical device class. 415

 Systems: Not all diagnostic use cases have coverage that corresponds to logical devices. 416
Some diagnostic services are best applied to a system as a single functional unit that is scoped 417
to it as a FRU. Some examples are: 418

– System stress tests and monitors that measure aggregate system health 419

– Miscellaneous, non-modeled, or baseboard devices that are often best viewed as part of a 420
system-level FRU 421

– Controllers that are part of an internal system bus structure and may not be independently 422
diagnosable but must be tested by proxy through another logical device 423
In this case, the controller is an embedded, indistinguishable component that contributes to 424
the overall system health. 425

 Other Services: Diagnostic services may also be applied to other non-diagnostic services. These 426
diagnostics may be used to ensure the reliability of the associated service. 427

4.6 Generic framework 428

Diagnostic services share the semantics of the CIM model regardless of whether the service launches 429
tests, starts a monitoring agent, or enables instrumentation. They share the same mechanisms for 430
publishing, method execution, parameter passing, message logging, and reporting FRU information. 431

By integrating the diagnostic model into the other areas of the CIM model, the client application can easily 432
transition between the management model and the diagnostics for the elements managed. Examples 433
include the “jobs” model for monitoring, the “log” model for capturing information, indications for reporting 434
test results, and effective use of the logical and physical models. 435

4.6.1 Diagnostic control 436

Diagnostic clients may need to control and monitor the status and progress of the diagnostics elements 437
that the service provider launches to implement a service request. Clients achieve this control and 438
monitoring capability in a generic manner by using the CIM job and process model. The Diagnostics 439
profile uses an extended version of the DMTF Job Control Profile to do this. The diagnostics extensions 440
for job control are backward compatible with the DMTF Job Control profile. That is, they extend, but do 441
not change the basic elements of the profile. The elements launched by the diagnostic service can be 442
collectively controlled and monitored through an instance of ConcreteJob that is returned by the 443
diagnostics RunDiagnosticService method in the diagnostic service. 444

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 15

4.6.2 Diagnostic logging and reporting assumptions 445

Diagnostics require the ability to report information about detected faults, state of the device, and 446
performance on the device. Diagnostics must also report the status of the diagnostics service and 447
configuration of the diagnostic components. This information can be gathered dynamically at checkpoints 448
while the diagnostic service is active (for concurrent analysis) or after the service is complete (for 449
postmortem analysis). Diagnostics use alert indications and a log to record relevant information from 450
diagnostic service applications, agents, and instrumentation. 451

The diagnostic model also uses other CIM models for standardizing error codes and indications. The 452
error codes and indications may be used to create trouble tickets and integrate CIM diagnostics into 453
CIM-based industry standard diagnostic policies and RAS use cases. 454

4.6.3 Localization 455

Localization refers to the support of various geographical, political, or cultural region preferences, or 456
locales. A client may be in a different country from the system it is querying and would prefer to be able to 457
communicate with the system using its own locale. Inherent differences, such as language, phraseology, 458
and currency, must be considered. 459

CDM communicates to clients using standard messages. These are messages that include text and 460
“substitution variables”. The text may be translated. For example, CDM uses standard messages to 461
communicate errors or warnings. One specific example would be the message DIAG4: 462

The <Diagnostic Test Name> test on the selected element to test <Element Moniker> completed 463
with warnings. See earlier warning alert indications or the <Log Object Path> for more details. 464

The substitution variables are denoted by the angle brackets (<variable>). The rest of the message is just 465
text that may be localized. The substitution variables are taken from the model instances (e.g., <Log 466
Object Path>) and should not be translated. 467

5 CDMV2.1 468

CDM provides a robust structure for discovering diagnostic tests, running and monitoring them, and 469
reporting results. CDMV2.1 supports a flexible and extendable model based on 470
settings/services/jobs/logs. 471

The following diagram represents the model components unique to CDM. You can find related 472
components (for example, disk drive) by searching the online documentation at www.dmtf.org. 473

This document corresponds to CIM 2.34 and DSP1002 v2.1.0. Always refer to the latest online diagrams 474
and MOF files for the most current version of the model. 475

5.1 Overview 476

The CDMV2.1 schema can be partitioned into several major conceptual areas: 477

 Diagnostic services, which include the diagnostic tests and help services 478

 Capabilities, which identify what the implementation can support 479

 Settings, which are used to define defaults for the capabilities and specify which capabilities to 480
use on any particular diagnostic test 481

 Jobs, which are used to monitor and control the execution of diagnostic tests 482

http://www.dmtf.org/

CIM Diagnostic Model White Paper DSP2000

16 Published Version 2.0.0

 Output, which could be either or both diagnostic logs and alert messages 483

 Concrete Diagnostics Profiles 484

DiagnosticLog

DiagnosticTest

Test Capabilities

Test Settings

Test JobStandard

Messages

Test Elements

Help Service

 485

Figure 1 – Overview of the diagnostics model 486

At the center of the model is the diagnostic test service. It provides the operation for invoking tests on the 487
test elements. For example, it might provide a “self-test” on disk drives (the test elements). 488

The test element would typically be modeled as part of other profiles. For example, the disk drive element 489
might be part of a storage array in a SNIA profile or it might be a disk drive in a SMASH profile. 490

Associated with the diagnostic test service is a Help Service. This service provides help information for 491
the test operation. 492

Also associated to the diagnostic test service are test capabilities and default settings for running the test. 493
The capabilities describe the variations that are supported for the test or the job that it creates. For 494
example, there are several service modes that may be supported for a test (HaltOnError, QuickMode, 495
etc.). The default settings identify the defaults that are used by the test if the client application does not 496
specify any settings. 497

When a test is invoked it will create a job and return control to the client application. This does not mean 498
the test has completed. It merely returns a pointer to the job that is monitoring the progress of the test. 499
The test may generate a log (if requested) for holding the results of the test. The test may also issue 500
standard messages that report on the progress of the test and any errors it may encounter. 501

When the test (and its job) is completed, the application will be sent a completion standard message, 502
indicating that the job has completed (with or without errors or warnings). It also means that the log has 503
been completely written. 504

5.2 Model components 505

This clause contains descriptions of the classes in the CIM Schema (CIM 2.34) that support version 2.1 of 506
the diagnostic model. 507

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 17

ManagedElement

DiagnosticSettingData

DiagnosticServiceCapabilities

DiagnosticSettingDataRecord

DiagnosticServiceRecord

Available

Diagnostic

Service

DiagnosticLog

RecordApplies

ToElement

CorrespondingSetting

DataRecord

UseOfLog

ElementCapabilities

ConcreteJob

See Diagnostic Job

Control

Affected

Job

Element

Owning

Job

Element

JobSettingData

See Diagnostic Job

Control

Element

SettingData

SoftwareIdentity

Element

Software

Identity

Service

Affects

Element

DiagnosticCompletionRecord

DiagnosticTest

HelpService

Service

Available

ToElement

Element

SettingData

CorrespondingSetting

DataRecord

RegisteredProfile

(See Profile Registration Profile)

Element

Conforms

ToProfile

*

0 , 1

1
1

1

1

*

*

*

*

*

*

*

*

*

*

* *

*

1

1
1

1

1

1

0 ,1

0 , 1

1

*

**

Service

Component

*

(See Referencing Profile)

ComputerSystem

HostedService

ReferencedProfile

(See Profile Registration Profile)

* *

1

1 ..*

LogManages

Record

1

1 ..*

HostedService

1

1

1

 508

Figure 2 – CDM version 2.1 diagnostics model 509

5.2.1 Services 510

CDM version 2.1 supports two services: the DiagnosticTest service and the HelpService. The 511
DiagnosticTest service supports invocation of a specific diagnostic test. The HelpService supports 512
retrieval of documentation of the test. 513

CIM Diagnostic Model White Paper DSP2000

18 Published Version 2.0.0

5.2.1.1 DiagnosticTestClass 514

A diagnostic test is modeled with the CIM_DiagnosticTest class. The DiagnosticTest is the only diagnostic 515
service class supported in CDMV2.1. 516

A diagnostic client uses the properties included in the DiagnosticTest class to determine the general 517
effects associated with running the test. For example, if a test is going to interact with the client, the client 518
needs to be aware of this and inform the user or otherwise be prepared to respond to requests from the 519
test. 520

A primary function of the diagnostic test (and its associations) is to publish information about the devices 521
that it services and the effects that running the service has on the rest of the system. 522

The diagnostic service publishes the following information: 523

 Name and description of the diagnostic test instance 524

 Characteristics unique to the diagnostic test function 525

– For example, “Is Interactive” means that the test interacts with the client application. 526

 Diagnostic capabilities implemented by the diagnostic test 527

 Default settings that the diagnostic test applies 528

 Effects on other managed elements 529

The diagnostic service (DiagnosticTest) also provides a method for launching the diagnostic processes 530
that implement the test. The RunDiagnosticService() method starts a diagnostic test for the specified 531
CIM_ManagedElement (which is defined using the ManagedElement input parameter). How the test 532
should execute (that is, its settings) is defined in a DiagSetting input parameter. The DiagnosticSettings 533
parameter is a string structure that contains elements of the DiagnosticSettingData class. For more 534
information about this class, see clause 5.2.3.1. 535

The AvailableDiagnosticService: ServiceAvailableToElement class associates the diagnostic service with 536
the managed element that it tests. The managed elements most often targeted by diagnostic services are 537
logical elements such as adapters, storage media, and systems, which are realized by the physical 538
model. The physical model contains asset information about these devices and aggregates them into 539
FRUs. 540

The ServiceAffectsElement class (not shown in the CDMV2.1 diagram) represents an association 541
between a service and the managed elements that may be affected by its execution. This association 542
indicates that running the service will pose some burden on the managed element that may affect 543
performance, throughput, availability, and so on. 544

ServiceComponent (not shown in the CDMV2.1 diagram) is an association between two specific services, 545
indicating that the one service (test) may invoke the second service (test) as a component of its test. 546

DiagnosticServiceCapabilities describes the abilities, limitations, and potential for use of various service 547
parameters and features implemented by the diagnostic service provider. For more information about this 548
class, see clause 5.2.2.1. 549

Results produced by a test are recorded in an instance of the DiagnosticLog class and linked to the test 550
by an instance of UseOfLog. In addition, the test will produce standard messages in the form of alert 551
indications if clients subscribe to the indications as a means of communicating test results to a client. 552

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 19

5.2.1.2 HelpService class 553

HelpService was added to fill a need for diagnostic online help. HelpService has properties that describe 554
the nature of the available help documents and a method to request needed documents. Diagnostic 555
services may publish any form of help 556

CIM_ServiceAvailableToElement should be used to associate the diagnostic service to its help 557
information. 558

5.2.2 Capabilities 559

Capabilities are “abilities and/or potential for use” and, for the diagnostic model, are defined by the 560
DiagnosticServiceCapabilities and the DiagnosticServiceJobCapabilities classes. Capabilities are the 561
means by which a service publishes its level of support for key components of the diagnostic model. CIM 562
clients use capabilities to filter settings and execution controls that are made available to users. For 563
example, if a service does not publish a capability for the setting “Quick Mode,” the client application 564
might “gray out” this option to the user. 565

Clients use the ElementCapabilities association from the DiagnosticTest instance to obtain instances of 566
DiagnosticServiceCapabilities and DiagnosticServiceJobCapabilities for the test. 567

5.2.2.1 DiagnosticServiceCapabilities class 568

The DiagnosticServiceCapabilities contains properties that identify the capabilities of the DiagnosticTest. 569
These include SupportedServiceModes, SupportedLoopControl, SupportedLogOptions, and 570
SupportedLogStorage. Each DiagnosticTest may advertise its capabilities with an instance of 571
DiagnosticServiceCapabilities to allow clients to determine the options they may specify on the 572
RunDiagnosticService method for invoking the test. The client would specify what they want using the 573
DiagnosticSettings parameter of that method. 574

5.2.2.1.1 SupportedServiceModes property 575

This property identifies the service modes supported by the DiagnosticTest. Multiple entries may be 576
provided in the SupportedServiceModes. That is, a test may support none, one, or many of the service 577
modes. 578

The service modes that may be supported by an implementation include test coverage 579
(PercentOfTestCoverage), accelerated test support (QuickMode), whether you want the test to stop on 580
the first error it encounters (HaltOnError), whether you can set how long results are supposed to be 581
available (ResultPersistence) and whether you want to inhibit destructive testing (NonDestructive). 582

A client application may choose to use any of the service modes that are advertised by the test 583
implementation in the SupportedServiceModes property. The client application would make its selection 584
using the DiagnosticSettingData class (see 5.2.3.1). 585

5.2.2.1.2 SupportedLoopControl property 586

This property identifies the loop controls supported by the DiagnosticTest. Multiple entries may be 587
provided in the SupportedLoopControl. That is, a test may support none, one, or many of the loop 588
controls. 589

The loop controls that may be supported by an implementation include setting a count of loops (Count), 590
establishing a time limit for the test (Timer) and specifying the test stop after a certain number of errors 591
(ErrorCount). 592

CIM Diagnostic Model White Paper DSP2000

20 Published Version 2.0.0

A client application may choose to use any of the loop controls that are advertised by the test 593
implementation in the SupportedLoopControl property. The client application would make its selection 594
using the DiagnosticSettingData class (see 5.2.3.1). 595

5.2.2.1.3 SupportedLogOptions property 596

This property identifies the log options supported by the DiagnosticTest. Multiple entries may be provided 597
in the SupportedLogOptions. That is, a test may support none, one, or many of the log options. 598

The log options that may be supported by an implementation include log records of several types (e.g., 599
Results, Warnings, Device Errors, etc.). Log records for the log options that are not listed are never 600
logged by the implementation. For a detailed list of log options, see DSP1002 version 2.1.0. 601

A client application may choose to use any of the log options that are advertised by the test 602
implementation in the SupportedLogOptions property. The client application would make its selection 603
using the DiagnosticSettingData class (see 5.2.3.1). 604

5.2.2.1.4 SupportedLogStorage property 605

This property identifies the log storage options supported by the DiagnosticTest. Multiple entries may be 606
provided in the SupportedLogStorage. That is, a test may support none, one, or many of the log storage 607
options. However, in DSP1002 version 2.1.0, only one option is supported. That option is the 608
DiagnosticLog. 609

An implementation may, however, specify a vendor unique log storage option by including “Other” as a 610
supported log storage option. 611

5.2.2.2 DiagnosticServiceJobCapabilities class 612

The DiagnosticServiceJobCapabilities contains properties that identify the job control capabilities of the 613
DiagnosticTest. These include DeleteJobSupported, RequestedStatesSupported, InteractiveTimeoutMax, 614
DefaultValuesSupported, ClientRetriesMax, CleanupInterval, and SilentModeSupported. Each 615
DiagnosticTest may advertise its capabilities with an instance of DiagnosticServiceJobCapabilities to 616
allow clients to determine the options they may specify on the RunDiagnosticService method for invoking 617
the test. The client would specify what they want using the JobSettings parameter of that method. 618

5.2.2.2.1 DeleteJobSupported 619

This capability is a Boolean property that indicates whether a client application may issue a 620
DeleteInstance operation on the concrete job that is spawned by the test. If this property is set to FALSE, 621
the DeleteOnCompletion property of the ConcreteJob must always be TRUE. If DeleteJobSupported is 622
TRUE, the DeleteOnCompletion property of the ConcreteJob may be either TRUE or FALSE. 623

5.2.2.2.2 RequestedStatesSupported 624

This capability is an array property that identifies the states a client application may request. These 625
should include Terminate and Kill and may include Suspend and Start. 626

5.2.2.2.3 InteractiveTimeoutMax 627

This capability identifies the maximum timeout value for interactions with client applications; that is, the 628
maximum time that a test will wait for a client to respond to a request for input or action. This capability 629
only applies to interactive tests. 630

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 21

5.2.2.2.4 DefaultValuesSupported 631

This capability is a Boolean property that indicates whether an interactive test will accept default values 632
as input on an interactive request to the client application. This capability only applies to interactive tests. 633

5.2.2.2.5 ClientRetriesMax 634

This capability identifies the maximum number of retries a test will allow on any one interaction with the 635
client application. An implementation would allow one or more retries to allow a user to correct 636
typographical or other errors on their input. 637

5.2.2.2.6 CleanupInterval 638

This capability identifies the time period that the implementation will keep a job defined with 639
DeleteOnCompletion = FALSE. The implementation may delete jobs that have been around longer than 640
the CleanupInterval. 641

5.2.2.2.7 SilentModeSupported 642

This capability is a Boolean, that when TRUE, means that the interactive test implementation is capable 643
of running with default values (either the ones defined in the JobSettings parameter or the ones defined in 644
the default JobSettingData). If the value is FALSE, the client application must provide the default inputs 645
as requested by the test. 646

5.2.3 Settings 647

Settings are classes that are used as input to the RunDiagnosticService method as parameters that 648
control the execution of the test. The RunDiagnosticService includes two parameters to hold this 649
information: DiagnosticSettings and JobSettings. These parameters are string encodings of 650
CIM_DiagnosticSettingData and CIM_JobSettingData classes. 651

For each of these classes, an implementation may populate instances of the default values. The default 652
CIM_JobSettingData class is required, but a default for the CIM_DiagnosticSettingData is not required. In 653
either case, the range of values that may be specified in the DiagnosticSettings and JobSettings 654
parameters of the RunDiagnosticService method are identified in the CIM_DiagnosticServiceCapabilities 655
and CIM_DiagnosticServiceJobCapabilities. 656

5.2.3.1 DiagnosticSettingData Class 657

DiagnosticSettingData is derived from CIM_SettingData and is used to contain the default and 658
run-specific settings for a given test. Diagnostic service providers publish default settings in an instance of 659
this class (associated to the service by a default instance of ElementSettingData), and diagnostic clients 660
create a new instance and populate it with these defaults with, possibly, user modifications. This new 661
setting object is then passed as an input parameter to RunDiagnosticService(). For all properties except 662
InstanceID and LoopParameter, the values set by a test client in a DiagnosticSettingData object are 663
"qualified" by corresponding properties in DiagnosticServiceCapabilities. If the capabilities do not include 664
support for a setting, the client must maintain the default for that setting. The options that may be selected 665
for the DiagnosticSettings parameter include HaltOnError, QuickMode, PercentOfTestCoverage, 666
LoopControl, LoopControlParameter, ResultPersistence, LogOptions, LogStorage and VerbosityLevel. 667

5.2.3.1.1 HaltOnError 668

When this property is TRUE, the test should halt after finding the first error. If the implementation includes 669
a DiagnosticServiceCapabilities instance for the test, HaltOnError should only be set to true when 670
DiagnosticServiceCapabilities.SupportedServiceModes includes “HaltOnError”. 671

CIM Diagnostic Model White Paper DSP2000

22 Published Version 2.0.0

5.2.3.1.2 QuickMode 672

When this property is TRUE, the test should attempt to run in an accelerated manner by reducing either 673
the coverage or the number of tests performed. If the implementation includes a 674
DiagnosticServiceCapabilities instance for the test, QuickMode should only be set to true when 675
DiagnosticServiceCapabilities.SupportedServiceModes includes “QuickMode” 676

5.2.3.1.3 PercentOfTestCoverage 677

This property requests the test to reduce test coverage to the specified percentage. If the implementation 678
includes a DiagnosticServiceCapabilities instance for the test, PercentOfTestCoverage should only be set 679
to true when DiagnosticServiceCapabilities.SupportedServiceModes includes “PercentOfTestCoverage”. 680

5.2.3.1.4 LoopControl and LoopControlParameter 681

The LoopControl property is used in combination with the LoopControlParameter to set one or more loop 682
control mechanisms that limit the number of times that a test should be repeated. With these properties, it 683
is possible to loop a test (if supported) under control of a counter, timer, and other loop terminating 684
facilities. If the implementation includes a DiagnosticServiceCapabilities instance for the test, LoopControl 685
should only be set to a value contained in the DiagnosticServiceCapabilities.SupportedLoopControl 686
property. 687

5.2.3.1.5 ResultPersistence 688

This property specifies how many seconds the log records should persist after service execution finishes. 689
If the implementation includes a DiagnosticServiceCapabilities instance for the test, ResultPersistence 690
should only be set when DiagnosticServiceCapabilities.SupportedServiceModes includes 691
“ResultPersistence”. 692

5.2.3.1.6 LogOptions 693

This property specifies the types of data that should be logged by the diagnostic service. 694

This capability identifies whether a client may specify the nature of data to be logged by the test. If the 695
implementation includes a DiagnosticServiceCapabilities instance for the test, LogOptions should only be 696
set to values contained in DiagnosticServiceCapabilities.SupportedLogOptions property. 697

5.2.3.1.7 LogStorage 698

This property specifies the logging mechanism to store the diagnostic results. If the implementation 699
includes a DiagnosticServiceCapabilities instance for the test, LogStorage should only be set to values 700
contained in DiagnosticServiceCapabilities.SupportedLogStorage property. 701

5.2.3.1.8 VerbosityLevel 702

This property specifies the desired volume or detail logged for each log option supported by a diagnostic 703
test. The possible values include Minimum, Standard, and Full. The actual meaning of Minimum, 704
Standard, and Full is vendor specific, but the default is Standard. Full means everything that the 705
implementation supports and Minimum means the minimal amount of information supported by the 706
implementation. 707

5.2.3.2 JobSettingData class 708

The JobSettingData class is used to specify the default settings for controlling the execution of the test 709
job. The JobSettings parameter of the RunDiagnosticService may contain values that are supported by 710
the DiagnosticServiceJobCapabilities associated with the DiagnosticTest. Clients may encode the values 711

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 23

they desire in the JobSettings parameter or let the parameter default to the default instance of the 712
JobSettingData. 713

The options that may be selected for the JobSettings include DeleteOnCompletion, InteractiveTimeout, 714
TerminateOnTimeout, DefaultInputValues, DefaultInputNames, ClientRetries. and RunInSilentMode. 715

5.2.3.2.1 DeleteOnCompletion 716

This property indicates whether the job should be automatically deleted upon completion. If the 717
implementation includes a DiagnosticServiceJobCapabilities instance for the test and 718
CIM_DiagnosticServiceJobCapabilities.DeleteJobSupported is FALSE, the value of 719
CIM_JobSettingData.DeleteOnCompletion must be TRUE. If 720
CIM_DiagnosticServiceJobCapabilities.DeleteJobSupported is TRUE, the 721
CIM_JobSettingData.DeleteOnCompletion may be either TRUE or FALSE. 722

If DeleteOnCompletion is FALSE, the client is responsible for deleting the job. 723

5.2.3.2.2 InteractiveTimeout 724

This interval time property should have a value if the test is interactive (i.e., 725
CIM_DiagnosticTest.Characteristics property contains the value of 3). This value identifies the time the 726
test should wait for a response from a client after asking the client for input. 727

5.2.3.2.3 TerminateOnTimeout 728

This property defines the behavior when a client fails to respond within the time interval specified by the 729
InteractiveTimeout on the last request to the client for input. 730

5.2.3.2.4 DefaultInputValues and DefaultInputNames 731

The DefaultInputValues (e.g., device identifiers) may be used if the test is interactive and requires inputs 732
from the client (or user). The DefaultInputNames are the names for the values in DefaultInputNames 733
(e.g., the names of the device identifiers). These two properties are arrays and are correlated such that 734
the names match up with the input values. These properties are only relevant when a test is interactive 735
and it will be asking the user for input values. 736

5.2.3.2.5 ClientRetries 737

This property indicates the number of times the diagnostic test will prompt the client for the same 738
response after the client fails to invoke the CIM_ConcreteJob.ResumeWithInput() or 739
CIM_ConcreteJob.ResumeWithAction() method within a specified period of time (InteractiveTimeout) . 740
This property is only relevant when a test is interactive and it will be asking the user for input values or to 741
take actions. 742

5.2.3.2.6 RunInSilentMode 743

This property indicates whether the diagnostic test will not prompt the client for responses even though 744
CIM_DiagnosticTest.Characteristics contains the value of 3 (Is Interactive). When the value is TRUE, no 745
prompts are issued. Instead, the diagnostic test will execute using the default values defined in 746
CIM_JobSettingData. 747

5.2.4 Jobs and Job Control 748

When an invocation of the RunDiagnosticService method is successful (ReturnCode = 0), an instance of 749
CIM_ConcreteJob is created. This class provides a way for the client to monitor the progress of the test. 750

CIM Diagnostic Model White Paper DSP2000

24 Published Version 2.0.0

DSP1002 version 2.1.0 supports job control using the Diagnostic Job Control profile (DSP1119), which is 751
a specialized version of the DMTF Job Control profile (DSP1103). The Diagnostic Job Control is a 752
required component profile of the Diagnostics Profile. 753

5.2.4.1 Diagnostic jobs 754

The ConcreteJob that gets created on a successful invocation of the RunDiagnosticService method is 755
associated to the DiagnosticTest that spawned it by the CIM_OwningJobElement association. The 756
ConcreteJob also has a CIM_AffectedJobElement association to the CIM_ManagedElement (e.g., device) 757
on which the test is acting. 758

The ConcreteJob also has a CIM_HostedDependency association to the system in which the tested 759
device is contained. This allows clients to monitor all the jobs that are active within the system. 760

The ConcreteJob contains a number of properties of note: DeleteOnCompletion, TimeBeforeRemoval, 761
JobState, and PercentComplete. In addition, there are three methods available to clients for controlling 762
the execution of the job: RequestedStateChange(), ResumeWithInput(), and ResumeWithAction(). The 763
last two methods can be used for interactive tests. 764

5.2.4.1.1 DeleteOnCompletion 765

If the DeleteOnCompletion property is TRUE, the job and its related associations will be deleted 766
automatically. The job will be retained until a specified time expires after the completion of the job (see 767
TimeBeforeRemoval in clause 5.2.4.1.2). 768

If the DeleteOnCompletion property is FALSE, then the client application is responsible for deletion of the 769
job (using the DeleteInstance operation). 770

The client application that invoked the test can set this property by specifying DeleteOnCompletion in the 771
JobSettings parameter of the RunDiagnosticService method. 772

5.2.4.1.2 TimeBeforeRemoval 773

When the DeleteOnCompletion property is TRUE, the TimeBeforeRemoval is the time interval the 774
implementation must wait after the completion of the job before it may delete it. 775

If the DeleteOnCompletion property is FALSE, this property is ignored. 776

5.2.4.1.3 JobState 777

The JobState property identifies the current state of the job. The possible states for a job include the 778
values of 2 (New), 3 (Starting), 4 (Running), 5 (Suspended), 6 (Shutting Down), 7 (Completed), 8 779
(Terminated), 9 (Killed), 10 (Exception). The job is considered complete if the job states are 7, 8, 9, or 10. 780
The job state of 7 means the job has completed successfully. 781

5.2.4.1.4 PercentComplete 782

The PercentComplete property approximates the percentage of the test job that has completed. A 783
percentage of 0 means the test job has not started. A percentage of 100 means the test job has 784
completed. Any percentage in between 0 and 100 means the test job is in progress. 785

NOTE In some implementations, 50 percent may be the only indication that the job is in progress. 786

5.2.4.1.5 RequestedStateChange() 787

The concrete job can be managed by the client application through the RequestedStateChange 788
operation. This operation may be used to terminate or kill the test job. Terminate means ending the job 789

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 25

gracefully. Kill means end the job abruptly, where this may require ending the job without cleaning up. It 790
may also be used to suspend or resume the test job. 791

5.2.4.1.6 ResumeWithInput() 792

The ResumeWithInput operation would be supported for interactive test jobs that require additional input 793
from the client application (that is, the user). The request for input will be made by the test using a 794
standard message. The message will identify the inputs that are required to continue the test. When the 795
user supplies the input to the client application, it would pass those inputs to the test using the 796
ResumeWithInput operation. 797

5.2.4.1.7 ResumeWithAction() 798

The ResumeWithAction operation would be supported for interactive test jobs that require action be taken 799
by the client application (that is, the user). An action might be loading media in a device bay. The request 800
for action will be made by the test using a standard message. The message will identify the actions that 801
are required to continue the test. When the user performs the action and tells the client application, the 802
application would then tell the test using the ResumeWithAction operation. 803

5.2.4.2 Diagnostic Job Control 804

The Diagnostic Job Control profile is a specialization of the DMTF Job Control profile. It extends the 805
DMTF Job Control profile by adding the DiagnosticServiceJobCapabilities and the JobSettingData 806
classes. It also adds the support for interactive jobs and standard messages as illustrated in Figure 3. 807

DiagnosticTest

(See Diagnostics Profile)

ConcreteJob

HostedDependency

OwningJobElement

ManagedElement

(Affected Element)

(See Referencing Profile)

AffectedJobElement

MethodResult

AssociatedJobMethodResult

JobSettingData

ElementSettingData

Job Control Profile

DiagnosticServiceJobCapabilities

ElementCapabilities

Diagnostics Extensions to the

Job Control Profile

Standard

Messages

 808

Figure 3 – Diagnostics Extensions to Job Control 809

All other aspects of the DMTF Job Control profile are supported as specified in DSP1103. 810

CIM Diagnostic Model White Paper DSP2000

26 Published Version 2.0.0

5.2.5 Output from diagnostics tests 811

The output of a diagnostic test comes in two forms: the DiagnosticLog and the (Alert Indication) standard 812
messages. The DiagnosticLog output is supported by a test implementation if the LogStorage property of 813
its DiagnosticServiceCapabilities includes the DiagnosticLog option. 814

Standard messages are alert indications that a test can send during the execution of the test job. In order 815
for a client to receive the alert indications, the client must first subscribe to get the indications. 816
Subscribing to indications is documented in the Indications Profile (DSP1054). 817

5.2.5.1 Diagnostic logs 818

If the test implementation supports the diagnostics log and the client has requested a diagnostic log, one 819
instance of DiagnosticLog is created for each invocation of the test. This instance of the DiagnosticLog is 820
associated to the DiagnosticTest instance using the UseOfLog association. Log records are created 821
events that occur during the test and are attached to the DiagnosticLog by using the LogManagesRecord 822
association. This is illustrated in Figure 4. 823

DiagnosticTest

DiagnosticLog

UseOfLog

DiagnosticServiceRecord

DiagnosticSettingData

ResultPersistence=3600

LogStorage[] = “DiagnosticLog”

LogOptions[]

ElementSettingData

DiagnosticServiceCapabilities

SupportedServiceModes[] =

“ResultPersistence”

SupportedLogStorage[] = “DiagnosticLog”

SupportedLogOptions[]

ElementCapabilities

Standard

Messages

ConcreteJob

OwningJobElement

DiagnosticSettingDataRecord DiagnosticCompletionRecord

LogManagesRecord

 824

Figure 4 – Elements for diagnostic logs 825

When the diagnostic test is invoked a concrete job is started and a DiagnosticLog is created (assuming 826
DiagnosticSettingData.LogStorage includes “DiagnosticLog”). As the test job executes, standard 827
messages are issued to subscribers and log records are written to the DiagnosticLog. There are three 828
types of records that may be written: a DiagnosticSettingDataRecord, DiagnosticServiceRecords, and a 829
DiagnosticCompletionRecord. The DiagnosticSettingDataRecord identifies the DiagnosticSettingData 830
information that was used, the DiagnosticServiceRecords identify various items that might be logged 831
during the test and the DiagnosticCompletionRecord summarizes the execution status upon completion of 832
the test. 833

There are three properties in DiagnosticServiceCapabilities and DiagnosticSettingData that pertain to 834
diagnostic logs. If a test is to create a diagnostic log, the 835

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 27

DiagnosticServiceCapabilities.SupportedLogStorage array property should include the enumeration for 836
“DiagnosticLog” and the DiagnosticSettingData.LogStorage must include “DiagnosticLog”. 837

The DiagnosticServiceCapabilities.SupportedLogOptions array property identifies the types of log records 838
supported by the test and the DiagnosticSettingData.LogOptions array property identifies the record types 839
desired for this execution of the test. 840

If the DiagnosticServiceCapabilities.SupportedServiceModes array property includes the enumeration for 841
“ResultPersistence”, the DiagnosticSettingData may set the ResultPersistence value. For example, in 842
Figure 4, the ResultPersistence property is set to 3600 seconds (one hour). 843

5.2.5.2 Diagnostic standard messages 844

As the test job executes, it may also issue standard messages to the client application by using alert 845
indications reporting the progress, status, errors, and warnings found while running the test. In addition, 846
alert indications are used by the test to communicate directions to client applications for interactive tests. 847
These indications may be subscribed to by the client application so that it can follow what is going on with 848
the test as it executes. 849

Some test implementations may not have the resources (that is, storage or memory) to keep a diagnostic 850
log. In such cases, the alert indications may be the primary mechanism for the test to report results to the 851
client application. Clients would typically receive the indications and write them to a client log (either in 852
client memory or to a file). 853

Some alert indications are required to be implemented by the test. For example, completion status 854
messages are required. In addition, if the test is an interactive test, another set of indications are required 855
for handling the interaction with the client application. 856

An example of exchanges between a client application and the test involving standard messages is 857
illustrated in Figure 5. 858

CIM Diagnostic Model White Paper DSP2000

28 Published Version 2.0.0

Client Application Interactive Test

RunDiagnosticService ()

Request for Inputs

(standard message)

ResumeWithInput ()

Job Settings Reset

(standard message)

The test completed with warnings

(standard message)

Legend

Warning

Information

Transfer of control

No Transfer of control

 859

Figure 5 – Example standard message exchange 860

In this example, the client application invokes the test by issuing the RunDiagnosticService () operation. 861
In the process of executing the test, the test discovers that it needs to reset a parameter in the 862
JobSettings passed to it. So the test issues a warning standard message and continues processing the 863
test. When the test needs input from the client application, it issues the “Request for Inputs” standard 864
message. The client application then gets the input from the user of the application and issues the 865
ResumeWithInput () operation. The test then runs to completion and issues a completion standard 866
message indicating that the test was completed with warnings. 867

5.2.6 Concrete diagnostics profiles 868

The Diagnostics Profile (as defined in DSP1002) is an abstract profile. It is to be used as a pattern for 869
diagnostics implementations and must first be “specialized” to a “concrete” profile. For example, DMTF 870
has defined a number of concrete derivations of DSP1002. These include: 871

 DSP1104 - Fiber Channel Host Bus Adapter Diagnostics Profile 872

 DSP1105 - CPU Diagnostics Profile 873

 DSP1107 - Ethernet NIC Diagnostics Profile 874

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 29

 DSP1110 - Optical Drive Diagnostics Profile 875

 DSP1113 - Disk Drive Diagnostics Profile 876

 DSP1114 - RAID Controller Diagnostics Profile 877

In addition to these concrete profiles, a vendor or organization may define their own concrete profile for 878
diagnostics for a managed element that they manage (see clauses 5.2.6.1 and 5.2.6.2) 879

Each of these profiles starts from the DSP1002 base (described in this document) and applies the class, 880
functions, and properties to a specific “managed element.” For example, the Disk Drive Diagnostics 881
Profile defines diagnostics support for disk drives. To do this, it extends the definition of DSP1002 by 882
adding DiagnosticServiceCapabilities properties, DiagnosticSettingData properties, and defining specific 883
standard tests that can be run on disk drives. In this case, the “managed element” referenced in this white 884
paper and in DSP1002 is specialized to CIM_DiskDrive. 885

Figure 6 illustrates how the Disk Drive Diagnostics Profile specializes the abstract Diagnostics Profile. 886

DiskDriveDiagnosticTest

DiskDriveDiagnosticSettingData

LBAStart

LBAEnd

Seed

DataSizes

DataPatterns

ElementSettingData

DiskDriveDiagnosticServiceCapabilities

Region

Seed

DataSizes

DataPatterns

ElementCapabilities

ManagedElement:

DiskDrive

AvailableDiagnosticService

 887

Figure 6 – Disk Drive specialization of the Diagnostics Profile 888

The DiskDriveDiagnosticTest class is a subclass of the DiagnosticTest class. It has all the properties that 889
are in the DiagnosticTest class (such as the Characteristics property). The 890
DiskDriveDiagnosticServiceCapabilities is a subclass of DiagnosticServiceCapabilities. It has all the 891
properties of DiagnosticServiceCapabilities (such as SupportedServiceModes), but it adds four additional 892
properties (shown in Figure 6) that are unique to disk drive testing. The DiskDriveDiagnosticSettingData is 893
a subclass of DiagnosticSettingData. It has all the properties of DiagnosticSettingData (such as 894
HaltOnError), but adds four additional properties (shown in Figure 6) that are unique to disk drive testing. 895
Finally, the managed element that is tested using the DiskDriveDiagnosticTest is, of course, a Disk Drive. 896

 897

CIM Diagnostic Model White Paper DSP2000

30 Published Version 2.0.0

Each different Disk Drive test would have its own instance of DiskDriveDiagnosticTest. The Disk Drive 898
Diagnostics Profile defines 13 tests: 899

 Short Self-Test 900

 Extended Self-Test 901

 Selective Self-Test 902

 Sequential Read 903

 Random Read 904

 Sequential Read-Write-Read Compare 905

 Random Read-Write-Read Compare 906

 Sequential Internal Verify 907

 Status 908

 Grown Defect 909

 4K Alignment 910

 Power Management 911

 Performance 912

Each of these tests would have their own DiskDriveDiagnosticTest instance with their own set of 913
DiskDriveDiagnosticsCapabilities and default DiskDriveDiagnosticsSettingData. 914

5.2.6.1 Other concrete profiles 915

DMTF recognizes that the need for diagnostics goes beyond the concrete profiles that are currently 916
defined by DMTF. But the abstract Diagnostics Profile (DSP1002) defines the basic elements that are 917
required for any concrete profile that intends to meet the requirements of CDM. Like the Disk Drive 918
Diagnostics Profile example shown in Figure 6 another organization or a vendor can define their own 919
Diagnostic profile for a new managed element in a similar manner. 920

5.2.6.2 Extension of concrete profiles 921

In addition to defining concrete profiles by specializing DSP1002, concrete profiles may also be defined 922
by specializing another concrete profile. For example, if an organization or vendor wants to extend the 923
disk drive diagnostics profile, this can be done by patterning the profile after the DMTF Disk Drive 924
Diagnostics Profile and adding additional properties, and methods, classes or both. 925

5.2.7 Relationship to “Managed Element” profiles 926

The Diagnostics Profiles have a relationship with the “managed element” profiles of the elements they 927
test. This relationship is primarily with the management of the elements that are tested. To illustrate this 928
point, consider the relationship between the Disk Drive Diagnostics Profile and the SNIA Array Profile as 929
shown in Figure 7. 930

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 31

Array Profile
DiskDriveDiagnosticTest

ManagedElement:

DiskDrive

AvailableDiagnosticService

StoragePool

StorageVolume

AllocatedFromStoragePool

AssociatedComponentExtent

StorageExtent

MediaPresent

ConcreteJob

OwningJobElement

AffectedJobElement

AffectedJobElement

DiskDrive

StorageExtent

MediaPresent

IsSpare

 931

Figure 7 – Diagnostics and Managed Element Profiles 932

In this example, the Disk Drive Diagnostics profile works on the Disk Drive managed element. But the disk 933
drive managed element is just part of an overall Array profile. When the test is invoked on a particular 934
disk drive, a job is created and the job has AffectedJobElement associations to all managed elements 935
that are impacted by the test. This includes a StorageExtent, a StoragePool, and a Volume allocated out 936
of the StoragePool. While the Disk Drive Diagnostics profile will tell you the elements that are affected by 937
the test, it will not tell you how those elements are related. That information is provided by the Array 938
profile (the managed element profile). 939

Furthermore, if the test results indicate that the disk drive is failing, the Disk Drive Diagnostics profile does 940
not provide the management solution to fix the problem. In the Array example shown Figure 7, the array 941
happens to support a spare drive that can be used to replace the failing drive. Because the sparing 942
function is part of the Array profile, it makes no sense for the Diagnostic profile to duplicate that function. 943
It may indicate that replacing the disk drive is necessary, but it would not provide the function to do the 944
replacement. That would be done by functions in the Array profile. 945

5.3 CDMV2.1 usage 946

5.3.1 Discovery and setup 947

5.3.1.1 Determining what testing capabilities exist on a system 948

Client applications can query the CIMOM for the diagnostic services that are associated with the 949
managed elements of interest that are scoped to the hosting system. This system scope could be a 950
computer system, single device, or could represent a network of remotely controlled systems. 951

CIM Diagnostic Model White Paper DSP2000

32 Published Version 2.0.0

To determine the testing capabilities of a system, a client would start from the system (e.g., the 952
ComputerSystem for the system in question) and follow the HostedService association to DiagnosticTest 953
instances. 954

Each DiagnosticTest will have a name that uniquely identifies the test (e.g., Self-Test). From each 955
DiagnosticTest instance, the client would follow the ElementCapabilities association to obtain the 956
DiagnosticServiceCapabilities and the DiagnosticServiceJobCapabilities instances for the test. These 957
capabilities define what the test is capable of supporting (see 5.2.2). 958

In addition, by following the AvailableDiagnosticService association from the DiagnosticTest, the client 959
can find the actual managed elements on which the test can work. 960

NOTE Some tests may invoke other “subtests”. The subtests may or may not be implemented through a diagnostic 961
profile (and may or may not have a DiagnosticTest instance). In any case, the use of these subtests is vendor 962
specific. That is, there is no user control over how the subtests are invoked. For example, a test for a host hardware 963
RAID controller may well invoke individual tests on disk drives in the controller. The test for the controller has settings 964
and capabilities, but not for disk drives. The controller may well execute known tests on the disk drives, but there is 965
no ability for the user of the RAID controller to input settings for the subtests on the disk drives. 966

5.3.1.2 Configure the service 967

After the applicable services are enumerated, the client discovers the configuration parameters for each 968
service. (This discovery can occur for all services up front or individually when a service is invoked.) 969

5.3.1.2.1 Settings 970

Settings are the runtime parameters that apply to diagnostic services, defined in the DiagnosticSettings 971
parameter (an embedded instance of a DiagnosticSettingData class). Diagnostic services may or may not 972
support all the settings properties, and this support is published using Capabilities (see 5.3.1.2.2). 973

A diagnostic service should publish its default settings with an instance of DiagnosticSettingData, 974
associated by an instance of ElementSettingData. The client application would traverse the 975
ElementSettingData association (with IsDefault=true) from the DiagnosticTest to the default 976
DiagnosticSettingData. Clients combine these defaults with user modifications (if supported in 977
Capabilities) into an embedded instance of DiagnosticSettingData to be used as the DiagnosticSettings 978
input parameter when invoking the RunDiagnosticService() method. Passing a null reference instructs 979
the service to use its default settings. 980

5.3.1.2.2 Capabilities 981

Capabilities are “abilities and/or potential for use” and, for the diagnostic model, are defined by the 982
DiagnosticServiceCapabilities class (or one of its subclasses). Capabilities are the means by which a 983
service publishes its level of support for key components of the diagnostic model. CIM clients use 984
capabilities to filter settings and execution controls that are made available to users. For example, if a 985
service does not publish a capability for the setting “Quick Mode,” the client application might “gray out” 986
this option to the user. The user would interpret the “grayed out” option as not available for setting. The 987
client application would not let a user change a grayed out option. 988

Client applications would use the ElementCapabilities association to traverse from the DiagnosticTest 989
instance to the DiagnosticServiceCapabilities instance for that DiagnosticTest. 990

5.3.1.2.3 Characteristics 991

Characteristics[] is a property of the DiagnosticTest class that publishes certain information about the 992
inherent nature of the test to the client. It is a statement of the operational modes and potential 993
consequences of running the service. For example, “IsDestructive” indicates that, if this service is started, 994
it will cause some negative system consequences. These consequences can usually be deduced by 995

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 33

considering the service, the device upon which the service is acting, and the “affected resources” (see 996
5.3.1.2.4). 997

Client applications should examine the Characteristics[] array of the DiagnosticTest instance and use this 998
information to determine what the test will or will not do and avoid situations that would be 999
counterproductive to the problem-determination goals. For example, if the Characteristics contains “Is 1000
Interactive”, the client application needs to anticipate getting alert requests from the test. Similarly, if the 1001
Characteristics contains “Is Destructive”, the client application needs to ensure that data will not be lost by 1002
running the test or that no state changes would result from running the test. 1003

5.3.1.2.4 Affected resources 1004

CDM uses the ServiceAffectsElement association to indicate the managed elements affected by the 1005
diagnostic service. 1006

Client applications would traverse this association to determine the system consequences of starting the 1007
service. The association could be to component elements of the element under test or it could be to 1008
elements that are derived from the element under test. 1009

5.3.1.2.5 Dependencies 1010

A service may depend on tests of other components for its successful execution. For example, to test an 1011
FC HBA, it may be necessary to run tests on the ports on the HBA. Similarly a test of RAID controller may 1012
require tests on the disk drives controlled by the RAID controller. The ServiceComponent association is 1013
used to publish these dependencies. 1014

5.3.1.3 Settings protocol 1015

To control the operation of a diagnostic service, a CDM provider must satisfy a number of requirements 1016
for supporting the diagnostics schema. For each test, the provider publishes a single instance of 1017
DiagnosticServiceCapabilties to indicate what features are selectable in a DiagnosticsSettings parameter. 1018
It should provide default settings for the service in an instance of DiagnosticSettingData and link the 1019
default settings instance to the diagnostic test instance using the ElementSettingData association. 1020

Any CDM client application can query the CIM server for DiagnosticTest instances. After selecting a test 1021
to run, the client should check for its default settings (see clause 5.3.1.2.1) and capabilities (see 5.3.1.2.2) 1022
by querying for the ElementSettingData and ElementCapabilities association instances. The client creates 1023
an instance of DiagnosticSettings and populates it with the default settings and any modifications made 1024
by the user, taking into account the published capabilities for that test. 1025

The RunDiagnosticService() method in DiagnosticService can be used to start a diagnostic test. An 1026
embedded instance of DiagnosticSettingData is passed as a DiagnosticSettings parameter to the method 1027
call. If the DiagnosticSetting parameter is not passed (that is, it is NULL), the CDM provider should use 1028
the default setting values. 1029

The diagnostic model uses settings to specify the parameters that are standard to all CIM diagnostic 1030
services. The diagnostic settings are never instantiated in the provider. Instead, the client passes test 1031
settings to the diagnostic service as a parameter. 1032

When a test's RunDiagnosticService() method is called, the test provider may create an instance of 1033
DiagnosticLog. The provider then copies each of the properties in the effective DiagnosticSettings 1034
parameter into the DiagnosticSettingDataRecord instance associated to the log, thus preserving a record 1035
of the settings used for that test execution. An effective DiagnosticSettingDataRecord is what was passed 1036
by the client as modified by the provider. When the test has started, a reference to a ConcreteJob 1037
instance is returned to the client. The client may then use this reference to monitor the job and the test 1038
progress (PercentComplete, JobState). 1039

CIM Diagnostic Model White Paper DSP2000

34 Published Version 2.0.0

5.3.1.4 Looping 1040

Properties in the DiagnosticSettingData allow specification of looping parameters to a diagnostic provider. 1041
These properties are actually arrays of controls that may be used alone or in combination to achieve the 1042
desired iteration effect. 1043

The LoopControlParameter property is an array of strings that provide parameter values to the control 1044
mechanisms specified in the LoopControl property. This property has a positional correspondence to the 1045
LoopControl array property. Each string value is interpreted based on its corresponding control 1046
mechanism. Four types of controls may be specified in the LoopControl array: 1047

 Loop continuously 1048

 Loop for N iterations 1049

 Loop for N seconds 1050

 Loop until greater than N hard errors occur 1051

For example, if a client wants to run a test 10,000 times or for 30 minutes, whichever comes first, it could 1052
set both count and timer controls into the LoopControl array to achieve the logical OR of these controls. In 1053
another example, if a client wants to run a test 1000 times or until 5 hard errors occur, two elements are 1054
set in this array, one of 'Count' and one of 'ErrorCount'. In the LoopControlParameter array, "1000" would 1055
be in the first element and "4" in the second element. 1056

If the LoopControl array is empty or null, no looping takes place. Also, if one element is 'Continuous,' the 1057
client must determine when to stop the test. 1058

5.3.1.5 Result persistence 1059

Each time a diagnostic test is launched, an instance of DiagnosticLog is created (if SupportedLogStorage 1060
indicates some form of log storage). When a log is created, the log is associated to the DiagnosticTest 1061
(via the UseOfLog association). 1062

NOTE A job is also created when the test is invoked. The persistence of the log is independent of the persistence 1063
of the job. Both the log and job are managed separately. 1064

Some situations (such as abnormal termination) could lead to an accumulation of old, unneeded results. 1065
The potential for this type of problem is exacerbated by looping. 1066

In general, diagnostic clients should implement a persistence policy and handle storage of results as 1067
needed. Providers should be required to retain results only long enough for clients to secure them. This 1068
time can vary, however, depending on the environment in which the testing is being performed and 1069
unexpected events that may occur. A setting property allows a diagnostic client to specify how long a 1070
provider must retain the DiagnosticLog after the running of a DiagnosticTest. This ResultPersistence 1071
property is part of the DiagnosticSettingData class. A provider advertises that it supports the 1072
ResultPersistence property in the SupportedServiceModes property of the DiagnosticServiceCapabilities. 1073
If it is supported, for each running of a diagnostic test, the client may specify whether and how long a 1074
provider must persist the results of running the test, after the test's completion. In typical use, a client 1075
makes one of the following choices: 1076

 Do not persist results (ResultPersistence = 0x0): The client is not interested in the results or is 1077
able to capture the results prior to completion of the test. The provider has no responsibility to 1078
maintain any related diagnostic log after test completion. 1079

 Persist results for some number of seconds (ResultPersistence = <non-zero>): The client needs 1080
the results persisted for the specified number of seconds, after which the provider may delete 1081

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 35

them. The client may delete the results prior to the timeout value being reached using the 1082
DeleteInstance operation on the DiagnosticLog. 1083

 Persist results forever (ResultPersistence = 0xFFFFFFFF): A maximum timeout value prohibits 1084
the provider from deleting the referenced diagnostic log. The client is responsible for deleting 1085
the log using the DeleteInstance operation on the DiagnosticLog. 1086

NOTE No default timeout value is specified by the profile for this property. However, if the provider publishes a 1087
default DiagnosticSettingData, the default value will be in the ResultPersistence property of that instance. 1088

5.3.1.6 LogOptions for typed messages 1089

The DiagnosticSetting.LogOptions property identifies the list of message types that the client could 1090
specify. The set of supported message types is extensible; see the DiagnosticSettingData MOF for the 1091
most current list. Some examples of types of log options include: 1092

 "Warnings" (value = 5): Log warning messages; for example, 'device will be taken off line', 'test is 1093
long-running', or 'available memory is low'. 1094

 "Device Errors" (value = 7): Log errors related to the managed element being serviced. 1095

 "Service Errors" (value = 8): Log errors related to the service itself rather than the element being 1096
serviced, such as 'Resource Allocation Failure'. 1097

 "Debug" (value = 14): Log debug messages. These messages are vendor specific. 1098

The CDM provider indicates that it supports various types of messages by setting values in the 1099
DiagnosticServiceCapabilities.SupportedLogOptions array. A client then selects what messages it wants 1100
captured by listing those types in the LogOptions property of the DiagnosticSettings parameter (an 1101
embedded instance of the DiagnosticSettingData class). The log options are independent and may be 1102
used in combinations to achieve the desired report. The default behavior is for an option to be 1103
off/disabled. 1104

5.3.2 Test execution 1105

5.3.2.1 Execute the service 1106

After the client considers all the system ramifications discussed in the preceding clause and chooses a 1107
service to run, it starts the service by invoking the RunDiagnosticService() method of the DiagnosticTest 1108
class. The diagnostic service provider receives settings and a reference to the managed element object 1109
to be used in running the service. If successful, the provider creates an instance of ConcreteJob, and 1110
returns a reference to it. 1111

5.3.2.1.1 Starting a test 1112

A diagnostic test job is launched in the following manner: 1113

1. When its RunDiagnosticService() method is called and it passes basic parameter checks, 1114
the diagnostic service provider creates an instance of ConcreteJob, creates a globally unique 1115
InstanceID key (see clause 5.3.2.1.1), and returns a reference to the job object as an output 1116
parameter. 1117

 The test is controlled by the DiagnosticSettings parameter (an embedded instance of 1118
a CIM_DiagnosticSettingData class). 1119

 The job is controlled by the JobSettings parameter (an embedded instance of a 1120
CIM_JobSettingData class). 1121

CIM Diagnostic Model White Paper DSP2000

36 Published Version 2.0.0

2. The diagnostic service provider creates the associations OwningJobElement and 1122
AffectedJobElement so that the client can identify which diagnostic service owns the job and 1123
what effects the job will have on various managed elements. 1124

3. When the job is completed, the client will either have or can retrieve the results of the test. 1125
See 5.3.2.6 for how to test for job completion and 5.3.3 for determining the results of the test. 1126

5.3.2.2 Monitor and control the test 1127

The client can use the job object to monitor and control the running of the test with the following 1128
properties and methods: 1129

 ConcreteJob.JobState—Property that communicates the current state of the job. Values are 1130
"New", "Starting", "Running", "Suspended", Shutting Down", "Completed", "Terminated", 1131
"Killed", "Exception", and "QueryPending". 1132

 ConcreteJob.DeleteOnCompletion – Property that identifies whether the job will be deleted 1133
upon completion of the test (plus the TimeBeforeRemoval interval). 1134

 ConcreteJob.TimeBeforeRemoval – The time interval between job completion and deletion of 1135
the job when DeleteOnCompletion is in effect. 1136

 Job.PercentComplete—Property that communicates the progress of the job. 1137

 Job.ElapsedTime—The time interval that the job has been executing or the total execution time 1138
if the job is complete. 1139

 ConcreteJob.RequestStateChange() –Method used to change the JobState. Options are 1140
"Start", "Suspend", "Terminate", and "Kill". 1141

 ResumeWithInput() – Method used to communicate that the user has taken an action 1142
requested by an interactive test. 1143

 ResumeWithAction() – Method used to communicate that the user has taken an action 1144
requested by an interactive test. 1145

5.3.2.3 Standard messages 1146

If a client application has subscribed to the alert indications for a test, it will get alert indications (standard 1147
messages) as the test executes. These messages report events that occur during the test. Ultimately, 1148
there will be an alert indication that indicates that the test was completed successfully, with warnings, or 1149
with errors. 1150

For tests that do not support extensive logging, the client should subscribe to the indications to collect 1151
information about the test. 1152

5.3.2.4 Interactive tests 1153

Some tests will be interactive. That is, the test will request additional input from the user (client 1154
application) to continue with the test. This might be connecting a device or inserting or removing media 1155
into (or from) a device bay. 1156

A user can determine if a test is interactive by inspecting the Characteristics property of the 1157
DiagnosticTest instance for the test. This is a string array property. If the string array includes the value 1158
“3” (“Is Interactive”), the application should be prepared to receive the alert indications that request 1159
actions or inputs. If the value “3” (Is Interactive) is not present in the Characteristics array, the test will 1160
never make interactive requests (that is, the test is not interactive). 1161

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 37

To receive these indications, the client must be subscribed to the DIAG34 and DIAG35 alert indications. 1162
These are the standard messages requesting inputs or actions. In addition, the client application should 1163
also subscribe to the DIAG9 (Test continued after last interactive timeout using default values), DIAG48 1164
(Test continued after an interim interactive timeout) and DIAG49 (Test terminated after an interactive 1165
timeout) standard messages. These report events related to interactive testing. 1166

For a complete list of standard messages for diagnostics, see DSP8055 (the DMTF Diagnostics Message 1167
Registry). 1168

5.3.2.5 Complete the test 1169

A client can use the preceding controls to terminate a test job or the test job may be completed normally 1170
when its work is done. The client monitors the controls to determine when the test job is completed. 1171

The outcome of running a test is generally presented as a series of messages and data blocks that the 1172
client can use in the problem-determination process. In CDM, the DiagnosticLog class is used for data 1173
kept by the provider. Test providers instantiate subclasses of DiagnosticRecord for logging data that the 1174
test job returns. These are aggregated to a log with the LogManagesRecord association. A client may 1175
attempt to read these records by traversing the UseOfLog and LogManagesRecord associations. 1176

Messages are sent to the client as AlertIndications as they happen during the test. The client should 1177
subscribe to the alert indications to receive them. After the client receives an alert indication, it may 1178
record the information provided in a client record store because the provider- maintained log has limited 1179
capacity and lifespan. 1180

5.3.2.6 Checking for test completion 1181

Client applications should be checking for the completion of the test job. All diagnostic tests are run as 1182
jobs and are under job control after the client gets a zero return code from the RunDiagnosticService 1183
method invocation. 1184

The ConcreteJob instance for the test job has two properties that can be checked. When a job has 1185
completed, the JobState property will be 7 (Complete). The OperationalStatus will contain 2 (OK) and 17 1186
(Complete) if the job completed successfully. The OperationalStatus will contain 6 (Error) and 17 1187
(Complete) if the job encountered an error. 1188

An OK completion or completion with an error does not necessarily tell the client what the test results are. 1189
For this, the client can either check the logs for the job or subscribe to the appropriate alert indications. 1190
Logging may or may not be supported, but alert indications will always be supported. The alert indications 1191
that tell the client that the test has completed are: 1192

 DIAG0 - The test passed 1193

 DIAG3 - The device test failed 1194

 DIAG4 - The test completed with warnings 1195

 DIAG44 - The test did not start 1196

 DIAG45 - The test aborted 1197

NOTE The DIAG45 message would be sent if the test was terminated or killed. Other DIAG alert messages will 1198
identify whether the job was killed or terminated and whether the action was taken by the client or the server. The 1199
JobState will also identify whether the job was terminated or killed. 1200

Other alert indications would provide details about the conditions encountered during the test. 1201

NOTE To receive the alert messages, the client must be subscribed to the alert indications. Minimally, the client 1202
should subscribe to the completion status messages shown above. 1203

CIM Diagnostic Model White Paper DSP2000

38 Published Version 2.0.0

5.3.3 Determining the results of a test 1204

When the RunDiagnosticService is invoked a zero return code indicates that the test job has been 1205
created and is executing the test. The results of the test are communicated in two ways: 1206

1) Alert indications 1207

2) Diagnostic log 1208

Support for the log is optional. Some profile implementations run in limited storage environments and 1209
cannot support maintaining a log. As a result, alert indications should always be supported by profile 1210
implementations. A client can determine whether a log is supported via the SupportedLogStorage 1211
property of the CIM_DiagnosticServiceCapabilities instance associated to the DiagnosticTest. 1212

5.3.3.1 Alert indications 1213

A client can follow the execution of a test by subscribing to alert indications generated by the test. As the 1214
test runs, it will generate the alert indications to any listener that is subscribed to the alerts. 1215

With alert indications, a client can react to events as they occur. This may be as simple as writing its own 1216
log of events generated by the test or it could be responding to a request for input or action made by the 1217
test (for interactive tests). 1218

Alert indications may be standard alert indications (documented in the profile) and they may include 1219
vendor unique indications. The standard alert indications provide a standard way of reporting events 1220
generated by the test. 1221

5.3.3.2 Diagnostic log 1222

If the test supports logging of information associated with the test, a log will be created for the test run. 1223
This log will be associated to the DiagnosticTest instance from which the test was invoked. It is important 1224
to note that one log is created for each invocation of the test. 1225

The InstanceID of the DiagnosticLog does not identify which invocation of the test that the log records. 1226
However the individual log records contain InstanceIDs that include the InstanceID of the ConcreteJob 1227
representing the particular invocation of the test. Specifically, the InstanceID of a log record is the 1228
InstanceID of the ConcreteJob with a suffix of the “sequence number” of the record. 1229

While there are certain properties in the log record that are standard, most of the information about the 1230
test event is vendor specific. The client should refer to vendor documentation on the contents on log 1231
records. 1232

There are two special log records that should be included in any given log. The first is a 1233
DiagnosticSettingDataRecord, which reports the DiagnosticSettings values that were used with the test. 1234
The second is the last log record, which is the DiagnosticCompletionRecord that reports the results of the 1235
test. 1236

5.3.4 General usage considerations 1237

5.3.4.1 Flushing out errors early 1238

CDM supports testing at any stage of the life cycle of components. It is important to flush out errors early 1239
in the life cycle of a component. The earlier errors are discovered, the less it costs to replace or repair the 1240
component. 1241

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 39

Tests for system development should be designed to exercise the functions of the component to ensure 1242
the expected results are produced. Any errors detected in this phase of the life cycle will reduce or 1243
eliminate redesign and rework during manufacturing. 1244

Tests for manufacturing should be designed to validate that all functions of the component are operating 1245
properly. These tests are particularly useful for components that are OEMed to system integrators for 1246
verifying that the components being shipped are working properly. This verification reduces the number of 1247
returned components and enhances customer satisfaction. 1248

Tests designed to work at the OEM integrators shop should be designed to verify that the component was 1249
not damaged in transit. These tests would be a variation of the self-test to ensure that everything is in 1250
working order. For example, for disk drives, this test is called a “conveyance test.” 1251

Tests defined for operation in the customer’s system environment should be designed to report on the 1252
health of the component, whether the component is about to fail and whether or not the component 1253
should be replaced or repaired. Specifically, the test should help customers isolate failing components. 1254
Additional tests may also be made available to service personnel to help in this area. 1255

5.3.4.2 Independent testing of components 1256

Some components are designed to be tested “outside” of a production or system environment. This is to 1257
accommodate testing in the manufacturing environment or in acceptance testing by a system integrator. 1258
Using CIM and CDM, manufacturing and acceptance testing can be achieved in one of two ways: 1259

1) Providing TCP/IP access to the component that has a CIM Server 1260

3) Providing another access protocol (via interfaces provided, such as SCSI or Wi-Fi) 1261

Either one of these techniques may be used to invoke the test from a client that resides outside the 1262
device. 1263

5.3.4.3 Interaction of tests with their environment 1264

Test results can be affected by the environment in which they are running. In many cases, tests will run 1265
when other concurrent activity is present. To prevent concurrent activity, the user should quiesce the 1266
system before running the test to avoid “outside influences” on the test. 1267

In some cases, the test may actually tell the user that it cannot run due to current conditions. In these 1268
cases, the test job will generate an alert message (DIAG12), which indicates that the job was not started. 1269
That alert message will also provide a reason for why the job was not started. Some of the reasons might 1270
include: 1271

 Element already under test 1272

 Too many jobs running 1273

 Test disabled 1274

 Element disabled 1275

 Element in recovery 1276

 Resources are inadequate to run job 1277

The alert message provides the user with information necessary to change the conditions to allow the test 1278
to run. When the user gets a DIAG12 alert message, no job will be created and the user must clear the 1279
condition and re-run the test. 1280

NOTE To receive the alert message, the client must be subscribed to the DIAG12 alert indication. 1281

CIM Diagnostic Model White Paper DSP2000

40 Published Version 2.0.0

5.3.4.4 Testing degraded elements 1282

In CIM models for management, many of the key elements in the management domain will report status. 1283
In SMI-S, for example, the OperationalStatus property is used extensively to report the status of managed 1284
elements. Users can determine testing required based on the status information. 1285

If an element is reporting an OperationalStatus of “Stressed” or “Degraded”, various tests might be run to 1286
determine the reason for the status. A self-test might be run to determine the overall health of the 1287
element. Performance tests might be run to determine performance problems. 1288

If an element is reporting an OperationalStatus of “Error”, the client should run tests to determine why the 1289
element is reporting an error. This investigation might start with a self-test, but may involve more pointed 1290
tests after reviewing the results of the self-test. 1291

If an element is reporting an OperationalStatus of OK and nothing else, testing on that element would 1292
only be done to verify the element is operating properly. Typically, this might be a self-test. 1293

5.3.5 Development usage considerations 1294

5.3.5.1 Provider development with common infrastructures 1295

The infrastructure for developing WBEM based agents for the management of systems and devices can 1296
be obtained from several sources. Most of these come with SDKs (system development kits). Some of the 1297
more common sources of WBEM software include: 1298

 WBEM Solutions J WBEM Server (See WBEM Solutions.) 1299

 OpenPegasus (See OpenPegasus.) 1300

 Windows Management Instrumentation (See WMI.) 1301

5.3.5.2 Client development with common infrastructures 1302

In addition to infrastructures for developing management agents, most of the sources also provide client 1303
libraries for accessing WBEM management agents. Such libraries take WBEM requests and build the 1304
actual xml messages that are sent to the management agents. The infrastructures identified in the 1305
previous clause also provide client libraries for accessing WBEM servers. 1306

In addition, another source for a client library is SBLIM (see SBLIM). 1307

5.3.6 Correlation of logs and jobs 1308

Figure 8 illustrates an example of a test that is run multiple times and the resulting logs and jobs. 1309

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 41

 1310

Figure 8 – Jobs and logs 1311

The process flows as follows: 1312

1) The client queries for available services and decides to run three instances of a service on two 1313
managed elements. 1314

2) The client invokes RunDiagnosticService() on ManagedElement A with the appropriate settings 1315
and receives a reference to Job1 (InstanceID = ”Org:Job1). 1316

3) The service is started, and Job1 is used for client/service communication and a new log 1317
(Org:Log1) is created. 1318

4) Similar actions take place for the second ManagedElement instance (ManagedElement B) and 1319
Job2 (InstanceID = Org:Job2) and a second log (Org:Log2) is created. 1320

Note that it is an implementation detail whether there are two instances of the service provider 1321
running or the provider is able to handle multiple requests of this kind. 1322

5) Two keyed jobs are running (Org:Job1 and Org:Job2), generating keyed log records. The next 1323
clause addresses these keys and how they should be constructed. 1324

6) After a service job is complete, the job associated with it may be deleted (if 1325
DeleteOnCompletion is TRUE). The results of the tests are obtained from the log and its 1326
aggregated DiagnosticServiceRecords. 1327

7) The client invokes RunDiagnosticService() on the first managed element (ManagedElement A) 1328
and a third job (Org:Job3) and a third log (Org:Log3) is created. 1329

DiagnosticRecord

InstanceID=”Org:Job1:0"

DiagnosticTest

Name = “Self-Test”

DiagnosticLog

Log 1

InstanceID=”Org:Log1"

UseOfLog

ManagedElement B

ConcreteJob

JOB1

Name = “Self-Test”

InstanceID=”Org:Job1"

ManagedElement A

ConcreteJob

JOB 2

Name = “Self-Test”

InstanceID=”Org:Job2"

OwningJobElement

DiagnosticLog

Log 2

InstanceID=”Org:Log2"

ConcreteJob

JOB 3

Name = “Self-Test”

InstanceID=”Org:Job3"

DiagnosticLog

Log 3

InstanceID=”Org:Log3"

AvailableDiagnosticService AvailableDiagnosticService

AffectedJobElement

AffectedJobElement

DiagnosticRecord

InstanceID=”Org:Job1:1"

DiagnosticRecord

InstanceID=”Org:Job1:2"

LogManagesRecord

DiagnosticRecord

InstanceID=”Org:Job2:0"

DiagnosticRecord

InstanceID=”Org:Job2:1"

LogManagesRecord

CIM Diagnostic Model White Paper DSP2000

42 Published Version 2.0.0

5.3.6.1 CDM key structure 1330

Keeping object references distinct is critical in this environment. Object references include key values for 1331
uniqueness, and a convention for key construction is often required to guarantee this uniqueness. 1332

5.3.6.1.1 ConcreteJob key 1333

The ConcreteJob class contains a single opaque key, InstanceID. The MOF description provides the 1334
following guidance for its construction: 1335

“The InstanceID must be unique within a namespace. In order to ensure uniqueness, the value of 1336
InstanceID SHOULD be constructed in the following manner: <Vendor ID><ID>. <Vendor ID> MUST 1337
include a copyrighted, trademarked or otherwise unique name that is owned by the business entity or a 1338
registered ID that is assigned to the business entity that is defining the InstanceID. (This is similar to the 1339
<Schema Name>_<Class Name> structure of Schema class names.) The purpose of <Vendor ID> is to 1340
ensure that <ID> is truly unique across multiple vendor implementations. If such a name is not used, the 1341
defining entity MUST assure that the <ID> portion of the Instance ID is unique when compared with other 1342
instance providers.” 1343

5.3.6.1.2 DiagnosticRecord key 1344

The DiagnosticRecord class has a single key, InstanceID. It is constructed to include the ConcreteJob 1345
InstanceID key. In addition, the DiagnosticRecord InstanceID includes a sequence number as a suffix. 1346

It is further specified in the Diagnostics Profile Specification that: 1347

To simplify the retrieval of test data for a specific test execution, the value of InstanceID for 1348
CIM_ConcreteJob is closely related to the InstanceID for the subclasses of CIM_DiagnosticRecord. 1349

CIM_DiagnosticRecord.InstanceID should be constructed by using the following preferred algorithm: 1350

<ConcreteJob.InstanceID>:<n> 1351

<ConcreteJob.InstanceID> is <OrgID>:<LocalID> as described in CIM_ConcreteJob, and <n> is an 1352
increment value that provides uniqueness. <n> should be set to 0 for the first record created by the test 1353
during this job, and incremented for each subsequent record created by the test during this job. Each new 1354
test execution will reset the <n> to 0. 1355

5.3.6.1.3 Correlation of jobs and logs 1356

The client application can determine which log belongs to which job by inspecting the diagnostic records 1357
in the log. The first portion of the InstanceID for the record is the InstanceID of the job. The second 1358
portion of the InstanceID is the sequence number of the diagnostic record. This can be seen in the 1359
example in Figure 8. 1360

6 Future development 1361

At the time of this writing, CDM has defined and published in two versions: CDMV1 and CDMV2. CDMV2 1362
continues to extend and enhance the functions introduced CDMV1. The futures described in this clause 1363
may be defined in later releases of CDMV2 if they are backward compatible with the rest of CDMV2. 1364
Other enhancements will be introduced into CDMV3. 1365

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 43

6.1 Functions for reporting on affected elements 1366

The CDM tests identify the affected job elements. This includes identifying the affect that the test has on 1367
the affected element. However, it does not identify the affect a failure on the component under test has on 1368
the affected elements. There are two approaches to address this need: Tests on higher level logical 1369
elements and diagnostic functions on the failed element. 1370

6.1.1 Tests on higher level logical elements 1371

In many ways, this approach is preferred. By exercising a test (e.g., a self-test) on the affected logical 1372
elements, the user can determine the affect the failing component has on the logical element. Often this 1373
can be a more precise assessment of the situation presented to the affected element. 1374

6.1.2 Diagnostic functions on the failed element 1375

An alternative approach is to offer diagnostic (reporting) functions on the failed component. In this 1376
approach, a diagnostic report function is invoked with the failing component and the error it is producing 1377
as its inputs. The function then would assess the logical elements that would be impacted and the nature 1378
of the impact. 1379

This can be useful in determining the scope of the problem presented by the failing component. However, 1380
it may still be necessary to run a self-test on each of the affected elements to determine the actual 1381
impact. 1382

6.2 Reporting of available corrective actions 1383

Some components may have self-correcting functions when errors are detected. However, sometimes 1384
corrective action requires user (or service) participation. On the whole, such repair actions fit within the 1385
context of the failing element. Corrective actions that involve actions on affected elements would be 1386
outside the scope of the repair functions on the failing element. 1387

As a simple example, say a disk drive exhausts it “spare sectors” and can no longer support its stated 1388
capacity. If the repair action is to reduce the capacity of the drive, this would be a repair function on the 1389
disk drive. If the repair action is to replace the failing drive with a spare and reconstruct the data for the 1390
drive on the spare, this is a repair action on an affected element (e.g., the RAID group). The former action 1391
is a repair action on the failing component (the disk drive). The latter is a repair action on a higher level 1392
affected element (e.g., the RAID Group). 1393

The proposed enhancement would be for a repair function that could be executed on the appropriate 1394
element (in the example, either the disk drive or the RAID group). The repair function would identify the 1395
desired repair action, the element to be repaired, and any inputs needed to affect the repair. An example 1396
of “any inputs” would be the identification of the spare drive to use to fix a RAID group. 1397

6.3 Continued integration with initiatives 1398

The diagnostic work in the DMTF has been focused on defining diagnostics for two initiatives: SMASH 1399
and SNIA. The work with both SMASH and SNIA elements will continue. 1400

In the case of work with SMASH, the focus will be on completing diagnostic profiles for components of a 1401
system. This is expected to include diagnostics for Fans, System Memory, Sensors, and Power Supplies. 1402
In addition, as new functions are introduced to the overall architecture, existing diagnostics for 1403
components like CPUs, FC HBAs, and disk drives will be updated to incorporate the new functions. 1404

In the case of work with the SNIA (and SMI-S), the focus will be on adding diagnostics for more 1405
components, like ports, and higher level logical elements, like storage pools and storage volumes. Like 1406

CIM Diagnostic Model White Paper DSP2000

44 Published Version 2.0.0

the SMASH work, as new functions are added to the CDM architecture, components in SMI-S will be 1407
updated to incorporate those functions. 1408

Note that some diagnostic profiles will be supported by both SMASH and SMI-S (such as fans, sensors, 1409
and power supplies). 1410

6.4 Integration of the RecordLog profile 1411

The CDM architecture defines a DiagnosticLog and a set of classes and associations that support logging 1412
of test results. This is independent of the DMTF Record Log profile. To facilitate standardization of 1413
logging functions, future versions or releases of CDM (specifically DSP1002) will incorporate the DMTF 1414
Record Log profile. 1415

6.5 Improvements to test reporting 1416

As users and clients gain more experience with diagnostic tests, it is anticipated that improvements will 1417
be required to satisfy some of their needs in the area of reporting. This could be additional log records, 1418
additional alert indications, and possibly additional classes. 1419

An example of additional log records might be log records that record the information conveyed in the 1420
alert indications (a new LogOptions enumeration). 1421

An example of adding additional classes is persistent summary results of a test associated to the tested 1422
element. That is, a log is transient and will disappear after the client has had a chance to retrieve its 1423
information. The persistent record would be a summary of test record that would be retained until deleted 1424
by the client. The record would be associated to the tested element. 1425

6.6 Improved reporting of testing capabilities 1426

The ability to determine test capabilities, as documented in 5.2.2and 5.3.1.1, covers the basic needs for 1427
reporting tests and the capabilities of the tests. However, there are areas where this could be improved 1428
upon. 1429

One area is the identification of “subtests” supported by a test. For example, a self-test will typically run a 1430
number of “subtests” to confirm proper functioning of an element. But the subtests are not identified. This 1431
will become more important as we expand CDM to cover diagnostics for logical elements. 1432

Another area is simplified reporting of tests and elements that support tests for a system. While this can 1433
be discovered (see 5.3.1.1), it is a multiple operation process to discover everything in a system that is 1434
covered. A future release of CDM might offer a method for retrieving the information via a single method 1435
call. 1436

6.7 Testing for logical elements 1437

The current CDM functions are oriented toward physical elements (such as field replaceable units). 1438
However, to be useful in a more general health and fault management environment, the diagnostic 1439
functions need to encompass logical elements that are affected by the physical elements. Any element 1440
that reports some property for of health status (such as OperationalStatus) would be a candidate for 1441
applying diagnostic testing. 1442

For example, a storage volume on an array subsystem reports OperationalStatus. This status might 1443
typically be affected by the status of the disk drives on which it stores its data or the ports used for 1444
accessing the disk drives. 1445

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 45

CDM support for logical elements is envisioned to include: 1446

 Improved reporting of “subtests” on the elements on which the logical element is based 1447

 Improved logging to distinguish entries that are attributed to subtests 1448

– This could be separate logs for subtests or log record information that identifies the 1449
subtest. 1450

 Improved alert indications to distinguish alerts associated with a subtest 1451

– This might be identification of the “super test” for a subtest alert indication. 1452

6.8 Enhanced reporting of affected job elements 1453

The AffectedJobElement association identifies the effects a test has on elements related to the element 1454
under test. However, AffectedJobElement is transient and only reports on the effect of running the test. 1455

Another interesting question is what effect the status of an element has on other elements. In particular, if 1456
a test discovers that an element (such as a disk drive) is in an error state, what storage volumes are 1457
impacted by the drive in error? Storage volume based on the disk drive would be affected job elements, 1458
but the ElementEffect might be “Performance Impact” and the AffectedJobElement goes away when the 1459
job goes away. 1460

What remains after the job goes away is the error state in the disk drive and some sort of degraded or 1461
error state in the storage volumes. But the linkage between the failing disk drive and the affected storage 1462
volumes is gone. 1463

One answer could be the RelatedElementCausingError association. This is an association called for by 1464
the SMI-S Health and Fault Management design. This could be populated to identify elements (such as 1465
storage pools) that are degraded due to failures in other elements (such as disk drives). But there are 1466
limitations to what can be reported using the RelatedElementCausingError association. 1467

Another approach would be a method that reports on the nature of the relationship (such as “Package 1468
Redundancy degraded”) and identifies possible corrective actions (such as “apply spare disk” or “replace 1469
disk”). 1470

6.9 Applying security to CDM functions 1471

DMTF has defined a set of security profiles for defining who is authorized to certain functions defined in 1472
CIM models. CDM will look into defining how the security profiles should be applied to CDM functions. 1473
This would require adding security profiles (e.g., Identity Management and Role Based Authorization) to 1474
the related profile list in DSP1002. 1475

End of document 1476

CIM Diagnostic Model White Paper DSP2000

46 Published Version 2.0.0

ANNEX A 1477

(informative) 1478

 1479

Change log 1480

Version Date Description

1.0.0 2004-12-14 The first version of the Diagnostic Model Whitepaper (12/14/2004), based on CIM 2.9.

2.0.0 2015-04-14 The whitepaper updated for CDM Version 2.1 and CIM Schema 2.34 (3/2/2015).

DSP2000 CIM Diagnostic Model White Paper

Version 2.0.0 Published 47

Bibliography 1481

DMTF DSP1002, Abstract Diagnostics Profile 2.0, 1482
http://dmtf.org/sites/default/files/standards/documents/DSP1002_2.0.0.pdf 1483

DMTF DSP1002, Abstract Diagnostics Profile 2.1, 1484
http://dmtf.org/sites/default/files/standards/documents/DSP1002_2.1.0a.pdf 1485

DMTF DSP1054, Indications Profile 1.2.1, 1486
http://dmtf.org/sites/default/files/standards/documents/DSP1054_1.2.1.pdf 1487

DMTF DSP1103, Job Control Profile 1.0, 1488
http://dmtf.org/sites/default/files/standards/documents/DSP1103_1.0.0_0.pdf 1489

DMTF DSP1104, FC HBA Diagnostics Profile 1.0, 1490
http://dmtf.org/sites/default/files/standards/documents/DSP1104_1.0.0.pdf 1491

DMTF DSP1105, CPU Diagnostics Profile 1.0.1, 1492
http://dmtf.org/sites/default/files/standards/documents/DSP1105_1.0.1.pdf 1493

DMTF DSP1107, Ethernet NIC Diagnostics Profile 1.0, 1494
http://dmtf.org/sites/default/files/standards/documents/DSP1107_1.0.0.pdf 1495

DMTF DSP1110, Optical Drive Diagnostics Profile 1.0, 1496
http://dmtf.org/sites/default/files/standards/documents/DSP1110_1.0.0.pdf 1497

DMTF DSP1113, Disk Drive Diagnostics Profile 1.0, 1498
http://dmtf.org/sites/default/files/standards/documents/DSP1113_1.0.0.pdf 1499

DMTF DSP1114, RAID Controller Diagnostics Profile 1.0, 1500
http://dmtf.org/sites/default/files/standards/documents/DSP1114_1.0.0.pdf 1501

DMTF DSP1119, Diagnostics Job Control Profile 1.0, 1502
http://dmtf.org/sites/default/files/standards/documents/DSP1119_1.0.0b.pdf 1503

DMTF DSP8055, Diagnostic Message Registry 1.0, 1504
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8055_1.0.0c.xml 1505

CIM Schema at http://www.dmtf.org/standards/index.php 1506

CMPI, Common Management Programming Interface Issue 2.0 1507
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12078 1508

JSR48, Java Specification Request 48 1509
https://jcp.org/en/jsr/detail?id=48 1510

OpenPegasus from The Open Group 1511
https://collaboration.opengroup.org/pegasus/index.php 1512

SBLIM, Standards Based Linux Instrumentation for Manageability 1513
http://sourceforge.net/projects/sblim/ 1514

SMI-S, Storage Management Initiative Specification 1515
http://www.snia.org/tech_activities/standards/curr_standards/smi 1516

SMASH, Systems Management Architecture for Server Hardware 1517
http://dmtf.org/sites/default/files/SMASH%20Overview%20Document_2010.pdf 1518

http://dmtf.org/sites/default/files/standards/documents/DSP1002_2.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1002_2.1.0a.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1054_1.2.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1103_1.0.0_0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1104_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1105_1.0.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1107_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1110_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1113_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1114_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1119_1.0.0b.pdf
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8055_1.0.0c.xml
http://www.dmtf.org/standards/index.php
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12078
https://jcp.org/en/jsr/detail?id=48
https://collaboration.opengroup.org/pegasus/index.php
http://sourceforge.net/projects/sblim/
http://www.snia.org/tech_activities/standards/curr_standards/smi
http://dmtf.org/sites/default/files/SMASH%20Overview%20Document_2010.pdf

CIM Diagnostic Model White Paper DSP2000

48 Published Version 2.0.0

WBEM Solutions website 1519
http://www.wbemsolutions.com/index.php?p-id=h 1520

WMI, Windows Management Instrumentation from MicroSoft 1521
http://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx 1522

http://www.wbemsolutions.com/index.php?p-id=h
http://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx

	1 Executive summary
	1.1 Overview
	1.2 Goals
	1.2.1 Manageability through standardization
	1.2.2 Interoperability
	1.2.3 Diagnostic effectiveness
	1.2.4 Global access
	1.2.5 Enhances ITIL processes
	1.2.6 Life cycle applicability
	1.2.7 Enable health and fault management
	1.2.8 Integration with other management functions
	1.2.9 Integration with other management initiatives
	1.2.10 Extendable to other system elements

	1.3 Who should read this paper
	1.4 CDM versions
	1.5 Conventions used in this document

	2 Terms and definitions
	3 Symbols and abbreviated terms
	4 Modeling diagnostics
	4.1 Consumer-provider protocol
	4.2 Implementation-neutral interface
	4.3 Backward compatibility
	4.4 Extendable to other Diagnostic Services for health and fault management
	4.5 Diagnostics are applied to managed elements
	4.6 Generic framework
	4.6.1 Diagnostic control
	4.6.2 Diagnostic logging and reporting assumptions
	4.6.3 Localization

	5 CDMV2.1
	5.1 Overview
	5.2 Model components
	5.2.1 Services
	5.2.1.1 DiagnosticTestClass
	5.2.1.2 HelpService class

	5.2.2 Capabilities
	5.2.2.1 DiagnosticServiceCapabilities class
	5.2.2.1.1 SupportedServiceModes property
	5.2.2.1.2 SupportedLoopControl property
	5.2.2.1.3 SupportedLogOptions property
	5.2.2.1.4 SupportedLogStorage property

	5.2.2.2 DiagnosticServiceJobCapabilities class
	5.2.2.2.1 DeleteJobSupported
	5.2.2.2.2 RequestedStatesSupported
	5.2.2.2.3 InteractiveTimeoutMax
	5.2.2.2.4 DefaultValuesSupported
	5.2.2.2.5 ClientRetriesMax
	5.2.2.2.6 CleanupInterval
	5.2.2.2.7 SilentModeSupported

	5.2.3 Settings
	5.2.3.1 DiagnosticSettingData Class
	5.2.3.1.1 HaltOnError
	5.2.3.1.2 QuickMode
	5.2.3.1.3 PercentOfTestCoverage
	5.2.3.1.4 LoopControl and LoopControlParameter
	5.2.3.1.5 ResultPersistence
	5.2.3.1.6 LogOptions
	5.2.3.1.7 LogStorage
	5.2.3.1.8 VerbosityLevel

	5.2.3.2 JobSettingData class
	5.2.3.2.1 DeleteOnCompletion
	5.2.3.2.2 InteractiveTimeout
	5.2.3.2.3 TerminateOnTimeout
	5.2.3.2.4 DefaultInputValues and DefaultInputNames
	5.2.3.2.5 ClientRetries
	5.2.3.2.6 RunInSilentMode

	5.2.4 Jobs and Job Control
	5.2.4.1 Diagnostic jobs
	5.2.4.1.1 DeleteOnCompletion
	5.2.4.1.2 TimeBeforeRemoval
	5.2.4.1.3 JobState
	5.2.4.1.4 PercentComplete
	5.2.4.1.5 RequestedStateChange()
	5.2.4.1.6 ResumeWithInput()
	5.2.4.1.7 ResumeWithAction()

	5.2.4.2 Diagnostic Job Control

	5.2.5 Output from diagnostics tests
	5.2.5.1 Diagnostic logs
	5.2.5.2 Diagnostic standard messages

	5.2.6 Concrete diagnostics profiles
	5.2.6.1 Other concrete profiles
	5.2.6.2 Extension of concrete profiles

	5.2.7 Relationship to “Managed Element” profiles

	5.3 CDMV2.1 usage
	5.3.1 Discovery and setup
	5.3.1.1 Determining what testing capabilities exist on a system
	5.3.1.2 Configure the service
	5.3.1.2.1 Settings
	5.3.1.2.2 Capabilities
	5.3.1.2.3 Characteristics
	5.3.1.2.4 Affected resources
	5.3.1.2.5 Dependencies

	5.3.1.3 Settings protocol
	5.3.1.4 Looping
	5.3.1.5 Result persistence
	5.3.1.6 LogOptions for typed messages

	5.3.2 Test execution
	5.3.2.1 Execute the service
	5.3.2.1.1 Starting a test

	5.3.2.2 Monitor and control the test
	5.3.2.3 Standard messages
	5.3.2.4 Interactive tests
	5.3.2.5 Complete the test
	5.3.2.6 Checking for test completion

	5.3.3 Determining the results of a test
	5.3.3.1 Alert indications
	5.3.3.2 Diagnostic log

	5.3.4 General usage considerations
	5.3.4.1 Flushing out errors early
	5.3.4.2 Independent testing of components
	5.3.4.3 Interaction of tests with their environment
	5.3.4.4 Testing degraded elements

	5.3.5 Development usage considerations
	5.3.5.1 Provider development with common infrastructures
	5.3.5.2 Client development with common infrastructures

	5.3.6 Correlation of logs and jobs
	5.3.6.1 CDM key structure
	5.3.6.1.1 ConcreteJob key
	5.3.6.1.2 DiagnosticRecord key
	5.3.6.1.3 Correlation of jobs and logs

	6 Future development
	6.1 Functions for reporting on affected elements
	6.1.1 Tests on higher level logical elements
	6.1.2 Diagnostic functions on the failed element

	6.2 Reporting of available corrective actions
	6.3 Continued integration with initiatives
	6.4 Integration of the RecordLog profile
	6.5 Improvements to test reporting
	6.6 Improved reporting of testing capabilities
	6.7 Testing for logical elements
	6.8 Enhanced reporting of affected job elements
	6.9 Applying security to CDM functions

	ANNEX A (informative) Change log

